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Introduction – a focus on methods and applications 
Over sixteen years ago, the first functional magnetic resonance imaging (fMRI) papers were published. Since 
then, fMRI has grown in terms of paper publishing rate (now over 2500 papers published a year), range and 
depth of applications, and sophistication not only of the most advanced fMRI studies but also of the more 
typical ones. A useful construct is to think of the advancement of fMRI along four inter-related “themes:” 
Interpretation, Methodology, Technology, and Applications. Interpretation involves understanding the 
relationship between neuronal activity and fMRI signal changes. Methodology involves the development of 
techniques to extract and compare this neuronal information. Technology involves the development of 
hardware, pulse sequences, and new functional contrasts for fMRI. Applications constitute the bulk of published 
studies that utilize but also drive the development of the other three themes.  

When the Unit on Functional Imaging Methods, (UFIM), was established in March of 1999, the goal was to 
balance the research evenly across the above mentioned themes. The rationale behind this approach was that 
novel fMRI applications are best carried out by researchers who have an appreciation of the issues involving 
signal interpretation and an understanding of latest methods and technology. In turn, the most significant 
advances in fMRI interpretation, methodology, and technology are made by those with their attention focused 
on applications. UFIM thus recruited individuals with skills that spanned these themes. 

Since the last BSC review, UFIM became the Section on Functional Imaging Methods (SFIM) when I received 
tenure, and the overall research goals have shifted from an even distribution across research themes to more 
focus on Methodology while maintaining a relatively high number of Applications papers. The emphasis on 
Methodology reflects what fMRI as a field has been experiencing in recent years. More fMRI publications are 
deviating from standard procedures involving group comparisons, normalization into a standardized space, and 
reporting/interpretation of the center of mass of “blobs” of activation.  Recently, with advances in techniques 
such as multivariate analyses “pattern effect mapping,” fMRI-based “brain reading”, real time fMRI with 
feedback to the subject, connectivity analysis based on “resting state” fluctuations and diffusion tensor imaging, 
high field imaging, parallel imaging, the emergence of pulse sequences having novel functional contrast, and 
high resolution imaging, the field has experienced a healthy resurgence in research effort focused on advancing 
new techniques rather than applying standard techniques.  

The projects of SFIM are integrated across the four themes as the overall goals of our research are: 1) to better 
understand, extract, and utilize neuronally- related and unrelated signal from time series fluctuations and 
activation-induced signal changes, 2) to develop and apply an array of methods that make optimal use of high 

spatial resolution, high sensitivity functional MRI. 

The goals of SFIM are complementary with those of 
the functional MRI facility (FMRIF), for which I am 
also the director. The primary purpose of FMRIF is to 
provide the most cutting edge fMRI technology for the 
25 PIs and total of 250+ NIH researchers who use 
fMRI. FMRIF strives to put into practical use on the 
scanners the cutting edge technology and methodology. 
A fraction of each FMRIF individual’s efforts is 
devoted to research, often in collaboration with 
members of SFIM. Ideally, FMRIF implements what 
SFIM develops, and provides the advanced technology 
on which SFIM relies. Figure 1 shows the individual 
interests – divided into the four themes - of the SFIM 
post docs, senior staff, and major collaborators over the 
last 4 years. 

This report is organized in the following manner. The 
themes are numbered 1 through 4. Within each theme, 
there are three sub headings: A is the introduction; B is 

       

 

 

Figure 1: Depiction of the relative interests 
(Technology, Methodology, Interpretation, and 
Applications) of the senior section members (post 
docs and staff scientists) as well as collaborators over 
the last four years. 
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progress report which describes projects that have been completed in the last four years – most having resulted 
in published manuscripts; and C describes either unfinished projects – still in abstract form -  or planned 
projects for the following four years. At the introduction to each theme, an overview of the projects will be 
given. Since 2003, SFIM has published 20 papers and has presented 94 abstracts at scientific meetings. Also, at 
the end of each project description, the section members and collaborators are listed in parentheses in 
alphabetical order, with the lead investigator in bold print.  

Due to space limitations of this report, all the summaries are brief and many projects summaries have been 
omitted. Also, while not explicitly mentioned, all future work projects are planned not only for the 3T but also 
for the 7T scanner operated by Alan Koretsky’s Laboratory of Functional and Molecular Imaging (LFMI), thus 
enabling higher sensitivity, resolution, detectability of physiologic noise, and perhaps unique functional and 
anatomic contrast. 

 

Theme 1: Signal Interpretation 

1A. Introduction: BOLD dynamics and resting state fluctuations 
More than four years ago the focus of the Interpretation theme was on better understanding the dynamics of the 
activation-induced fMRI signal change and how it varied over space and with spatial resolution, as well as on 
the use of this understanding to calibrate the signal or to remove non-neuronally relevant aspects of the signal 
magnitude and timing. In the past four years, the focus has been redirected, with a similar range of goals, on 
time series fluctuations. Time series fluctuations present a unique challenge in that they contain useful and 
artifactual information that overlap in spectral power and in space. For detecting activation-related changes, this 
is less of a concern, but the desire is still to remove these. In the context of extracting useful information from 
“resting state” time series, the difficulty is high. While some approach the problem with simultaneous measures 
of neuronal activity (EEG), we have chosen to approach the problem with simultaneous measures of what is 
presumably the source of the largest and most spectrally-overlapping artifact – changes in breathing depth. 
Several studies in this theme describe these efforts as well as efforts on identifying other sources of resting state 
temporal artifacts. An alternative goal in the temporal fluctuation work is the extraction physiologically (but not 
necessarily neuronally) -relevant information from fMRI time series.  

Lastly, in this theme we revisit the issue of understanding the hemodynamic response linearity and our efforts to 
separate neuronal from hemodynamic sources of these dynamics. This involves probing sources of fMRI non-
linearity by task timing modulation and cross-modal comparisons and modeling. Many of the completed studies 
reported here have been successful continuations of the “current and future” projects that were proposed in the 
BSC report four years ago.  

1B. Progress Report 

1B-1. The effect of stimulus duty cycle and “off” duration on BOLD response linearity 
The BOLD fMRI response has been shown in previous studies to behave in a nonlinear manner, with larger 
stimuli for brief stimuli than predicted from the response to longer duration stimuli.  This nonlinearity can be 
due either to nonlinearities in the neuronal activity, such as an initial transient increase in neuronal activity, or in 
a nonlinear dynamic interaction of hemodynamic parameters – the cerebral blood flow, volume, and oxygen 
extraction. The relative contribution of these mechanisms to the BOLD nonlinearity can be probed by 
investigating the response to a range of stimulus modulations. Specifically, we investigated the BOLD response 
to different stimulus duty cycles – a visual stimulus presented either 6% (brief on period), 25%, 50%, 75%, or 
94% of the time (brief off period), alternating with a simple fixation control, shown in Figure 2 [1].  

In contrast to the BOLD response to brief stimuli, the BOLD response to a brief (1s) cessation of the stimulus, 
resulted in a smaller decrease than predicted (data not shown) based on a linear extrapolation of longer stimulus 
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OFF periods.  In agreement with this observation, the amplitude of the deconvolved response varied depending 
on the stimulus duty cycle, with a smaller response for more frequent stimulation. 

Possible mechanisms for these nonlinearities were investigated by simulating different neuronal dynamics – 
transient overshoots in activity following stimulus onsets, a refractory period of this overshoot, and transiently 
elevated activity following stimulus cessation (an “OFF” response) – as well as different hemodynamics using 
the balloon model. Figure 3 summarizes these hypotheses. 

One hypothesized hemodynamic mechanism for the nonlinearity of the BOLD response to different stimuli 
durations is a delayed blood volume response [2, 3].  An elevated blood volume by itself causes a decreased 
BOLD signal.  If the blood volume changes significantly only for longer duration stimuli, then shorter duration 
stimuli will result in a slightly larger response (i.e. signal reducing blood volume effect lags behind).  However, 
most models also predict an elevated blood volume for a period following the cessation of a stimulus.  This 
would predict a larger than linearly proportional decrease for brief stimulus OFF periods compared to longer 
stimulus OFF periods, opposite to what has been observed here. The only hemodynamic nonlinearity that can 
therefore account for the observed response to stimulus cessations is a nonlinear relationship between the 
oxygen extraction and blood flow. Our models show that for physiologically realistic parameters, this can only 
account for up to half of the observed nonlinearity.  In contrast, the nonlinear neuronal dynamics could by itself 
explain most of the nonlinearity in the BOLD response. This suggests that the BOLD response reflects, to some 
degree, the neuronal dynamics, although one can’t completely rule out hemodynamic contributions. (Birn) 

1B-2. Linearity of the BOLD response to ramped stimuli – comparison with MEG 
Previous studies have shown that the BOLD fMRI response behaves in a nonlinear manner for brief stimuli (< 
2s duration), with a larger response than expected based on the response to longer duration stimuli.  As 
mentioned in 1B-1, nonlinearity could result from a nonlinear interaction of the dynamics of cerebral blood 
flow, cerebral blood volume, and oxygen extraction.  Alternatively, the nonlinearity could result from a 
transient overshoot in neuronal activity when the stimulus is first presented.  In this study, we investigated the 
role of these neuronal transients by varying the rate at which the stimulus contrast of the visual stimulus is 
increased.  A contrast reversing checkerboard was presented either with an abrupt transition in contrast, or with 
a more gradual increase (and decrease) over a period of either 0.5s or 1s.  Stimuli were presented in a slow 
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Figure 2: a: Stimulus timing in which 
the duty cycle was modulated.  b: 
Schematic illustration of the neuronal 
mechanism considered: an initial 
overshoot at the start of stimulation, 
adapting to a steady state; neuronal 
firing when the stimulus is turned off; 
and a refractory period during which 
the amplitude of the initial overshoot is 
diminished by closely preceding stimuli.  
c-e: BOLD response to different duty 
cycles c. Deconvolved from acquired 
data, and d-e: from stimulation 
involving nonlinear neuronal dynamics 
(d) or nonlinear hemodynamics (e). f-h: 
relative response amplitude, where 1 
indicates a linear response predicting a 
blocked response. In h., the dashed line 
indicates the relative amplitudes with no 
volume changes. The nonlinear 
hemodynamics cannot account for all 
the nonlinearity (since it opposes the 
oxygen extraction nonlinearity effect). 
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event-related design, once every 15s.  In addition, the neuronal activity evoked by these stimuli was 
investigated in a separate experiment using magnetoencephalography (MEG).   

Using a ramped stimulus contrast onset successfully caused a reduction in the transient overshoot in neuronal 
activity (as measured by the total MEG power across all frequencies) relative to the steady state, but the 
neuronal activity increased nonlinearly with the ramped increase in stimulus contrast, effectively lengthening 
the stimulus duration.  This resulted in a slight nonlinearity of BOLD responses predicted from the MEG 
response to different stimulus durations for all ramp durations (see Figure 3b).  This nonlinearity, however, was 
much smaller than the observed BOLD response nonlinearity (see Figure 3a).  This suggests that the fMRI 
BOLD nonlinearity is not solely due to this transient neuronal activity.  Future work will involve verification of 
these findings using better defined and understood stimuli. (Birn, Tuan) 

 
a                                                      b   

Figure 3:  Non-linearity with varying onset 
ramp durations, relative to steady state 
blocked signal amplitude, of a. BOLD 
signal, and b. MEG-predicted BOLD 
signal assuming a linear relationship 
between MEG and BOLD signal. While 
some nonlinearity is predicted by MEG, 
not all of it is explained, suggesting that 
BOTH hemodynamics and neuronal 
activity contribute to BOLD nonlinearities. 

1B-3. The effect of respiration changes on fMRI measures of activation and connectivity 
The goals of this study [4] were: 1) to characterize the temporal and spatial patterns of fMRI signal changes that 
are induced by variations in respiration; 2) to investigate the impact of these respiration variations on analyses 
of task-related activation and for resting-state functional connectivity; and 3) to evaluate methods to reduce the 
respiration artifact. A method is also introduced by which these variations in respiration can be estimated from a 
respiration belt placed around the subject’s chest without the need for a separate monitor for end-tidal CO2. 

 

Figure 4: A) Activations (red) and deactivations (blue) during a lexical decision making task; B) fMRI signals 
correlated with changes in respiration volume per time (RVT); C-F) Voxels correlated with the posterior 
cingulate (PC) at rest: C) with conventional connectivity analysis using RETROICOR [5] to correct for 
physiological noise; D) correlations after regressing out RVT changes (RVTcor); E) correlations during cued 
constant respirations; F) correlations after regressing out global signal changes. 

Figure 4 shows that the signal changes related to changes in respiration (as opposed to the respiration cycle 
itself) were found to overlap with many of the areas identified as part of the ‘default mode’ network.  This is 
certainly of concern with regard to the interpretation resting-state functional connectivity data.  Monitoring and 
removing these respiration variations led to a significant improvement in the identification of task-related 
activation and deactivation, but only a moderate change in a functional connectivity results. We are still 
investigating the limited success of this approach to the resting state results.  Regressing out global signal 
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changes, or cueing the subject to breathe at a constant rate and depth resulted in an improved spatial overlap 
between deactivations and resting state correlations. (Birn, Diamond, Jones, Smith) 

1B-4. The respiration response function 
Changes in the subject’s breathing rate or depth, such as a breath-hold challenge, can cause significant fMRI 
signal changes throughout gray matter, CSF, and cerebral blood vessels.  However, the response function that 
best models breath-holding induced signal changes, as well as those resulting from a wider range of  breathing 
variations including those occurring during rest, has not yet been determined. 

These signal changes are slower than neuronally induced BOLD signal changes, and cannot be modeled using 
the brain activation-induced hemodynamic response function. The goal of this study was to derive a new 
response function that can be used to model fMRI signal changes induced by variations in the respiration 
volume. This “respiration response function,” as shown in Figure 5a., was determined by averaging the 
response to a series of single deep breaths performed once every 40s amongst otherwise constant breathing.  

 
a.                                                                     b.                                 
Figure 5: a. Respiration-induced signal changes in response to a deep breath. Image show areas that are 
significantly correlated with this function. Red curve: Impulse response function derived from a Wiener 
deconvolution of the averages response to a single deep breath.  Dark blue curve: ideal fit representing the 
Respiration Response Function.  Dotted line shows the typical gamma-variate HRF typically used to model 
activation induced BOLD changes. The light-blue line shows the canonical HRF used on SPM, based on a 
difference of two gamma-variate functions.  b. Averaged fMRI responses to respiration modulations: Breath-
holding, cued depth changes, and cued rate changes. Blue curves: fit of RVT convolved with respiration response 
function.  Green curve: fit of RVT convolved with typical Gamma-variate used for BOLD responses. Responses 
are averaged across 11 subjects. 

This average response is characterized by an early signal increase (earlier than the activation-induced signal 
change) followed by a later and highly pronounced undershoot that shows a minimum at approximately 16s.  
When convolved with the breath-to-breath changes in respiration volume, this response function accurately 
models the fMRI signal changes that result from the cued breath holding as well as cued depth and rate changes, 
as shown in Figure 5b. (Birn, Jones, Smith) 

1B-5. Artifactual, adjacent-voxel time series correlations in echo-planar data 
Another potential source of artifact when performing voxel-wise correlations on resting state data is that of the 
correlations between adjacent voxels that arises from a combination of scanner instability and the unavoidable 
reality of shared signal power between adjacent MRI voxels (adjacent voxels share signal power is under an 
envelope approximating a sinc pulse). This may be a source of local correlations that have been interpreted as 
due to highly local functional connectivity [6]. We demonstrated this local spatial correlation by showing the 
time-course correlation as a function of voxel separation within and across slices for a human brain in resting 
state and for a water-filled sphere (phantom). The plots of adjacent voxel correlation as function of spatial 
separation from human brain and phantom time series, shown in Figure 6, are surprisingly similar. Both show 
correlations that extend further than with the signal taken from the areas of no signal. The spatial correlation 
structure found in the phantom must be artifactual. Artifactual correlations spanning up to two centimeters 
occur within and between different imaging slices. (Bodurka, Kriegeskorte) 
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Figure 6: fMRI time-course correlation between 
voxels. Linear correlation between the voxel time 
courses as a function of the distance between the 
voxels for the human brain in resting state (left) and 
an MRI phantom (right). Each pair of voxels is 
represented by a dot (cyan if the voxels are from the 
same slice, magenta otherwise). The average 
correlation functions are plotted as solid lines (black 
for all voxel pairs, cyan for within-slice voxel pairs, 
magenta for between-slice voxel pairs). X-axis units 
are mm. These analyses were performed for cubic 
regions of interest of 8×8×8 voxels located either 
inside (top) or outside the object (bottom).  

1C. Current and Future Experiments 

1C-1. Echo time dependence of physiologic noise. 
Krueger et al. have introduced a model in which physiological noise is divided into BOLD and non-BOLD 
related components [7]. By separating the fluctuations that are echo time (TE) dependent from those that are 
not, one should be able to cleanly separate susceptibility-related from non-susceptibility related (and therefore, 
optimistically, non-neuronal) fluctuations. We investigate this technique further by characterizing the time 
series power spectrum of the TE dependent signal changes.  

Six resting-state runs with varying flip angles were collected using a GE-EPI sequence while recording 
physiological traces with a pulse oximeter and a respiration belt (n=4). By varying the flip angle across runs, the 
Krueger model can be fitted to the data and an estimate of λ (which describes the relative proportion of 
physiologic noise) can be obtained. This λ can be written in terms of BOLD and non-BOLD noise 
contributions, σB and σNB respectively, where is σB isTE dependent and σNB is not. By collecting multi-echo 
data, the TE-dependent term, σB, can be cleanly separated from the remaining noise contributions. Multi-echo 
acquisition has the added advantage of allowing calculation of T2* and M0 time series by fitting S=M0exp(-
TE/T2*) to the five TE values. Imaging parameters: Axial plane, 3 slices, 24cm FOV, 5mm slice thickness, 
Matrix size = 32 x 32, TR=350ms, TE=17, 37, 57, 77 and 97ms, flip angles 45, 36, 27, 18, 9 and 0 degrees, 
number of repetitions=700. 

The TE-dependence of σB scaled to σ0 is shown in Figure 7a and confirms the inverted U-shape presented in 
original Krueger study. After calculating the power spectrum density (PSD) at each TE, shown in Figure 7b, 
correlations of this inverted U-shape with the power at each frequency across TE allows us to determine which 
frequencies display the greatest TE-dependence and thus the greatest susceptibility-related fluctuations. 

       
a 

 
b 

 
c 

Figure 7: a. TE-dependence of σB scaled to σ0 is shown in grey matter for varying flip angles. b. Illustration 
showing that a fit of σB from the Kruger model was carried out on the power spectrum density (PSD) across 5 
echoes. This was the procedure by which c. was created. c. The frequency profile of TE-dependent fluctuations. 
The x-axis units for b and c are Hz.  The x-axis units are ms.   
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Figure 7c shows this correlation averaged over all flip angles and subjects, demonstrating that: 1) TE-dependent 
fluctuations are predominantly at lower frequencies (<0.1Hz), 2) gray matter exhibits higher BOLD related 
fluctuations than white matter suggesting either a difference in vasculature and/or the presence of fluctuations 
related to neuronal firing and 3) there exists an increase in TE-dependent noise around the breathing frequency 
(~0.3Hz), which may reflect neuronal or non-neuronal susceptibility-related changes. An alternative way to 
analyze this data is by observing the difference in the power spectra of the T2* and M0 time series. Since BOLD 
related fluctuations should affect T2* and not M0, this difference will determine at what frequencies these 
fluctuations are present. This avoids some errors that may occur in fitting of the data as M0 changes may cause a 
similar change to artifactually appear in T2*. Taking the difference in these measures reduces these errors. 

It is clear that there exist noise sources in the data that are TE-dependent but not related to neuronal activity. 
These physiological noise sources can be removed from the data using standard methods such as RETROICOR 
[5]. However, there exist other physiological noise sources that are low-frequency and TE-dependent such as 
changes in breathing depth over time. These changes produce fluctuations at ~0.03Hz and can be removed by 
RVT correction. After removing these, well-defined TE-dependent peaks are present at low frequencies 
(<0.1Hz) whose sources appear to be distributed across the entire brain.  

The question of whether neuronally-related BOLD fluctuations can be cleanly separated from other sources of 
noise is unresolved. This study demonstrates that limiting analysis to the lower frequencies is not enough. By 
also adding the constraint of TE-dependence, one still has to be concerned with correction of low-frequency 
physiological noise components. So, while multi-echo data combined with Fourier analysis is a potentially 
useful tool, it does not completely separate neuronally from non-neuronally related BOLD fluctuations. 
Combined with physiologic correction techniques, multi-echo data may prove to be more useful than the 
physiologic correction techniques alone. (Birn, Bodurka, Luh, Murphy) 

 

Figure 8: The difference of the T2* and M0 
PSD curves are shown for each subject 
without and with physiologic correction. 
Physiologic noise manifests itself in the T2* 
PSD, but, after physiologic correction, 
breathing (0.35Hz), cardiac (1.1Hz), and 
lower (~0.03Hz) frequencies, related to RVT, 
are removed. All subjects show TE-
dependent peaks at ~0.1Hz. 

1C-2. Sensitivity of BOLD contrast to neuronal firing rate vs. number of active neurons 

An open question regarding BOLD contrast concerns precisely how it reflects neuronal activity. Does it matter 
how neuronal activity is temporally and spatially integrated within a voxel in the time scale of  the 
hemodynamic response? Given a constant integrated neuronal activity, do many neurons firing infrequently 
elicit a different BOLD response than a few neurons firing rapidly? In this study, the central issue is not whether 
or not local field potentials or spiking influence BOLD changes since we assume that for these particular 
stimuli, changes in local field potentials and spiking rates that correspond to changes in the stimuli parameters 
are proportional to each other.  

Some studies report linear increases in BOLD-signal in human MT (hMT+) with increasing stimulus coherence 
in random dot displays[8, 9]. This is interpreted as evidence for a linear relationship between non-simultaneous 
measures of neuronal firing rate and hemodynamic changes[8]. Other studies, however, found higher activity in 
hMT+ in response to incoherent motion compared with coherent motion[10]or no difference at all[11].  

To test how motion coherence modulates the BOLD response in hMT+ and other areas, we used a blocked 
design fMRI study in which subjects viewed a random dot display for 1s and decided whether the stimulus was 
moving to the left or to the right. Coherence varied randomly from block to block (0%, 6.4%, 12.8%, 25.6% and 
51.2%). hMT+ was identified independently, in Figure 9a, using a low contrast motion stimulus. Shown in 
Figure 9b is the response magnitude from this region as a function of stimulus contrast.  
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a.                                     b.                                                   c. 

Figure 9. a. hMT+ localized with a low-contrast moving stimulus. b. BOLD signal change in hMT+ as a function of 
coherence (N=6). Note the non-monotonicity of the curve. c. Retinotopic areas and result of group analysis using a 
U-shaped reference function displayed on the flattened occipital cortex of one subject. Note the main foci in V3/V3A 
and hMT+. 

In a second blocked design fMRI experiment, we tested whether the non-monotonic shape of the BOLD 
response was due to attentional effects. In addition to the random dot stimulus, the letters L and T were flashed 
rapidly (5Hz) at fixation. Before each block the subjects were cued to either do the letter discrimination task 
(count the number of Ls or Ts, LETT) or the motion discrimination task (MOT). When subjects performed 
LETT the BOLD response in hMT+ was smaller than during MOT; the shape of the BOLD response as a 
function of coherence, however, was U-shaped in both experiments. Thus it is unlikely that the non-
monotonicity in the BOLD-response is due to attentional modulatory effects. 

These data are consistent with a recent study reporting that in anesthetized monkeys BOLD signal varied non-
monotonically as a function of noise in visual stimuli[12], supporting the view that BOLD-contrast measures a 
heterogeneous pooled neural response. According to this view, at 0% coherence (pure noise) many weakly 
activated neurons with different preferred directions would cause a similar summed BOLD response as few 
highly active neurons at 51.2% coherence tuned to that direction. 

To test the this model directly, we are using motion stimuli with which we modulate separately the firing rate 
and the number of active neurons by parametric manipulations of the number of dots, their coherence, and 
velocity. According to this model, shown in Figure 10, we predict that BOLD contrast change corresponding to 
changes in either firing rate or to the number of active neurons will be more rapid than the other, thus summing 
to cause the observed dip in BOLD response at 12% contrast. (Boemio, Heekeren, Kriegeskorte, Marrett, 
Murphy, Parr, Ruff) 

         a.                         b.      

Figure 10.a. Contribution of  number of neurons firing and firing strength to summed population response 
(adopted from [12]). B. Hypothesized component contributions to BOLD signal and their subsequent summation to 
produce the curve in Figure 9. 
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Theme 2: Methodology 

2A. Introduction: An increased role of methodology advancement 
As mentioned, fMRI has been experiencing an increased focus on methodology development. Specifically, 
researchers are looking much closer at time series fluctuations, calibration techniques, voxel-wise patterns of 
activation, and the modulation of activation by real time feedback to the subject. This research is the most active 
area of our group. Specifically, we have been focusing on methods to remove unwanted fluctuations from fMRI 
time series as well as to calibrate the time series signal such that neuronal activity during “rest” and activation 
may be accurately assessed, mapped, and compared. We have also been focusing on methods to make use of the 
information contained in voxel-wise patterns of activation rather than mapping of activation areas. Lastly, 
we’ve been working on straightforward, yet practical issues of what determines the optimal resolution at which 
to scan, and how long one needs to scan.  

2B. Progress Report 

2B-1. Analyzing for information, not activation, to exploit hi-res fMRI. 
Challenges of hi-res fMRI 

High-resolution functional magnetic resonance imaging (hi-res fMRI) promises to help bridge the gap between 
the macro- and the microview of brain function afforded by conventional neuroimaging and invasive cell 
recording, respectively[13]. Hi-res fMRI (voxel volume ≤ (2 mm)3 ) is robustly achievable in human studies 
today using widely available clinical 3-Tesla scanners. However, the neuroscientific exploitation of the greater 
spatial detail poses four challenges (Fig. 11): (1) Hi-res fMRI may give inaccurate (i.e. blurred, displaced and 
distorted) images of fine-scale neuronal activity patterns. (2) Single small voxels yield very noisy 
measurements. (3) The greater number of voxels complicates interpretation and poses a more severe multiple-
comparisons problem. (4) The functional correspondency mapping between individual brains is unknown at 
the fine scale of millimeters. These challenges can be met by shifting the focus of brain mapping and region-
of-interest analysis from the activity patterns to the amount of information they convey about experimental 
conditions. Multivoxel-pattern-recognition analysis of regions of interest reveals such information. We 
introduced two related developments: (1)  A method for continuous mapping of local pattern information using 
a multivariate searchlight (below) and (2) representational similarity analysis(discussed in 4C-2). 

 

Fig. 11: Four challenges of hi-res fMRI. a. Comparison of 
fMRI (standard and hi-res) and invasive electrophysiology in 
terms of spatial precision and number of channels, with 
which brain activity is simultaneously measured. The grey 
shading indicates the precision range of hi-res fMRI (≤ 2 mm 
voxel width). b. The FCNR drops rapidly when fMRI 
resolution is increased (challenge (2), green). The blue curve 
shows the rapid growth of the number of voxels needed to 
cover the brain as voxels become smaller (challenge (3), 
blue). c. In the hi-res range (gray shading), fMRI may give an 
inaccurate (blurred, distorted, displaced) image of the 
neuronal activity pattern (challenge (1), red). Moreover, a 
voxel-to-voxel intersubject correspondency is very difficult to 
define and, in fact, may not exist (challenge (4), magenta). 
Standard fMRI, by contrast, operates at the spatial scale of 
cortical areas. At this coarser scale, hemodynamic blurring, 
distortion and displacement of neuronal activity patterns is 
less problematic and intersubject correspondency is roughly 
determined by the Talairach common space. 
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Information-based searchlight mapping 
Brain mapping analysis has focused on the discovery of activations, i.e. of extended brain regions whose 
average activity changes across experimental conditions. Here we propose to ask a more general question of the 
data: Where in the brain does the activity pattern contain information about the experimental conditions? To 
address this question we combine classical brain mapping with multivoxel pattern-information analysis [14].  

The information in local contiguous activity patterns is mapped out by scanning the imaged volume with a 
spherical “searchlight”, whose contents are analyzed multivariately at each location in the brain. All the steps of 
this technique are shown in Figure 12. (Kriegeskorte) 

 
Figure 12: Searchlight procedure: In order to find regions whose response pattern distinguishes two conditions, 
the imaging volume is scanned with a spherical multivariate searchlight (1, red voxel cluster). The searchlight is 
centered on each voxel in turn (selecting overlapping voxel sets at adjacent positions). For each voxel position, 
the time courses of all voxels falling within the searchlight are subjected to joint multivariate analysis (2, 3). As a 
measure of response-pattern difference, we use the Mahalanobis distance. The Mahalanobis distance 
representing the response-pattern difference within the searchlight is recorded in a map at the central voxel 
position (4). The whole volume is scanned in this manner (5). Note that the resulting map represents local 
response pattern information, not activation. The map (between steps 5 and 6) shows actual data from a single 
subject viewing face images. The white arrow marks the map maximum. The map is thresholded (6) to define the 
region distinguishing the two conditions. Optionally, the highlighted voxel cluster can be expanded by the 
searchlight radius (7), in order to obtain an ROI that includes all voxels that contributed to the local multivariate 
effects indicated by the super-threshold voxels. The location and shape of the region thus defined represents a 
subject-specific hypothesis, which is subsequently tested on independent data. Statistical inference can 
alternatively be performed on whole information-based maps by randomization of the condition labels. 

2B-2. Determination of the “suggested” fMRI resolution. 
This work addresses the choice of the imaging voxel volume in blood oxygen level dependent (BOLD) 
functional magnetic resonance imaging (fMRI) [15]. Noise of physiological origin that is present in the voxel 
time course is a prohibitive factor in the detection of small activation-induced BOLD signal changes. If the 
physiological noise contribution dominates over the temporal fluctuation contribution in the imaging voxel, 
further increases in the voxel signal-to-noise ratio (SNR) will have diminished corresponding increases in 
temporal signal-to-noise (TSNR), resulting in reduced corresponding increases in the ability to detect activation 
induced signal changes. On the other hand, if the thermal and system noise dominate (suggesting a relatively 
low SNR) further decreases in SNR can prohibit detection of activation-induced signal changes. Here we have 
proposed a “suggested” fMRI voxel volume where thermal plus system-related and physiological noise 
variances are equal. This is concept is illustrated in Figure 13. 

Based on this condition we have created maps of fMRI suggested voxel volume from our experimental data at 
3T, since this value will spatially vary depending on the contribution of physiologic noise in each voxel. Based 
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on our fast EPI segmentation technique we have found that for grey matter (GM), white matter (WM), and 
cerebral spinal fluid (CSF) brain compartments the mean suggested cubical voxel volume is 1.8 mm3, 2.1 mm3 
and 1.4 mm3, respectively. Serendipitously, 1.8 mm3 voxel volume for GM approximately matches the cortical 
thickness, thus optimizing BOLD contrast by minimizing partial volume averaging. (Bodurka, Murphy, 
Petridou, Ye) 

 

Figure 13: A simulation of the TSNR versus SNR relationship for 
three different brain tissue components and a phantom. The lines 
represent the human brain white matter (green), gray matter (red), 
and cerbro-spinal fluid (black). The dark dotted line represents the 
expected result for a phantom (no physiological noise present). The 
locations of the suggested voxels for specific brain compartments 
where Eq. (2) holds are marked using large color dots. The dashed 
vertical lines indicate TSNR and SNR coordinates for SVV and the 
horizontal dotted/dashed lines limit for TSNR. The black 
horizontal lines below the horizontal axis show the SNR range 
available with the system standard transmit/receive birdcage coil 
and the 16 channel receive-only surface coil brain array are used. 

 

2B-3. Design and processing strategies for overt responses 
In the previous BSC report we demonstrated, using simulations in the “current and future experiments” section, 
that task-related motion artifacts during overt speech can be reduced by using specific stimulus timings, such as 
event-related designs or even a blocked design with a 10s block duration alternated with a 10s rest period.  
These designs exploit the differences in the temporal characteristics between the rapid motion-induced and the 
slower hemodynamic signal changes.  In a continuation of this initial study, we evaluated various event-related 
and blocked designs involving overt word reading in their ability to detect function and to avoid speech-induced 
motion artifact, using both simulation and experiments [16]. A blocked design with task and control durations 
of 10s, and an event-related design with a minimum stimulus duration of 5s and an average inter-stimulus 
interval of 10s were found to optimally detect blood oxygenation level dependent signal changes without 
significant motion artifact. These results are demonstrated experimentally in Figure 14. 

 

Figure 14: One axial brain 
slice at the level of the 
motor cortex showing the t-
statistic maps of the 
correlation of an ideal 
BOLD response for blocked 
design with two designs: 
30s task/30s control, and 
10s task/10s control. Three 
analysis strategies are 
shown: (left) no correction 
for task-related motion 
(aside from registration), 
(middle) ignoring time 
points during the task, 
(right) and using the task 
timing to model the motion-
induced signal change.  

Ignoring images acquired during speech can help recover signal in areas affected by motion, but substantially 
reduces the detection power in other regions.  Using the stimulus timing as an additional regressor to model the 
motion offers little benefit in practice, due to the variability of the motion induced signal change.  
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In addition, these methods were applied in our collaboration with Alex Martin in his studies involving patients 
with autistic spectrum disorder as they produced overt verbal responses. Also, as described in 4C-1, we apply 
this technique in normal subjects as they performed a verbal fluency task. (Birn) 

2B-4. Determining the minimally necessary scan duration. 

Noise in fMRI data necessitates signal averaging to extract functional signal changes. This noise has 
physiological and scanner-related contributions and is a major obstacle to detecting activation in a single time 
series.  The relative fraction of physiologic noise increases linearly as a function of SNR, hence as image SNR 
increases, temporal signal to noise ratio (TSNR) in oxygenation-sensitive BOLD signal saturates. 

A natural development in fMRI is a progression towards high spatial resolution. To investigate small-scale 
structures of ~1mm3 size that exist in the brain such as cortical layers and columns, detection of activation in 
high-resolution single voxel time series is required, and multi-subject averaging is prohibitively difficult. This 
study characterizes the relationship between TSNR and the necessary scan duration to reliably detect activation 
in a single voxel with a given fractional signal change[17]. Using standard equations for TSNR, correlation 
coefficient (cc) and P value as it relates to cc and assuming that an fMRI time series contains block activations 
with an effect size eff, we were able to derive an equation that calculates the number of time points required to 

detect the activation: 
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Simulations using 600,000 of fMRI time series with a Gaussian noise distribution were used to verify the 
validity of the theory. A good correspondence with the theory was found with only slight discrepancies when 
detecting small effect sizes at very strict P values. The simulations allowed us to determine a new measure, 
TSNRG, which was defined as the TSNR level that guarantees detection. Figure 15a shows the difference 
between this measure and the theory. 

Both the theory and simulations assume that noise in fMRI data is Gaussian, and each time point is independent. 
Physiological noise, though, is not Gaussian and introduces autocorrelations into the data that can disrupt the 
ability to detect activations. Resting state data was acquired from 5 subjects to determine the legitimacy of the 
TSNRG measure. When using this noise containing autocorrelations, a far greater number of time points are 
required to detect activation. However, at high resolution (low SNR), physiological noise contributions are 
reduced and hence the results from the resting state data correspond more closely to the simulated results, 
shown in Figure 15b.  It has been shown that the TSNRG measure derived from the simulations is valid in the 
high resolution fMRI regime. An equation that determines the number of time points required to guarantee 
activation detection was derived by modifying the theory above using non-linear fitting techniques: 
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G . This equation is plotted in Figure 15c and demonstrates that if 

the goal is to image at columnar resolution (~1.5mm3) with an effect size of 1% at 3T using standard 
techniques, doubling the TSNR can decrease the required experimental length four fold. It also show that at 
typical SNR values, obtaining significant results under these constraints will require over 2000 time points. 
(Bodurka, Murphy) 
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Figure 15: a. The TSNR values that guarantee activation (TSNRG) according to the simulations are shown with 
the solid line. The corresponding theoretical curves are shown with dotted lines. Simulated TSNRG values are 
greatly elevated above the theoretically derived values. b. The effect of removing most of the physiologic noise by 
increasing the resolution can be seen. By removing physiologic noise, the datasets become more Gaussian and 
therefore more like the simulated curves, especially at smaller effect sizes and lower scan durations. Hence, if the 
influence of physiological noise can be removed by using methods such as RETROICOR, pre-whitening and 
higher resolution scans, the simulated data give the true relationship between required TSNR and require scan 
duration. c. The TSNRG values derived from the simulations can be used as a gold standard for determining the 
required scan duration for detecting activation. Plots of the equation (in text) that fit these data are shown for 
various effect sizes and P values. When acquiring in the high-resolution regime, where physiological noise is 
reduced and the remaining noise is close to Gaussian, these graphs can be used to determine the number of time 
points required to detect the activation. For example, to detect an effect size of 1.0%, to a liberal threshold of P = 
0.05 when the TSNR=50, ~320 time points are required but to detect activation with a conservative threshold of P 
= 5x10-10 nearly 1500 time points are required. 

2C. Current and Future Experiments 

2C-1. Calibration of BOLD signal change with cued or spontaneous breathing variations 
The amplitude of the BOLD response depends strongly on the underlying vasculature, with the largest 
responses generally occurring in large draining veins. This heavy vascular, or resting venous blood volume, 
weighting makes it difficult to determine subtle differences in the amount of neuronal activity between brain 
regions or between subjects.  Earlier studies have suggested calibrating the BOLD signal by using a 
hypercapnic challenge, achieved either by an administration of CO2 or by breath-holding. This can provide a 
map of the relative changes in signal from a global and presumably uniform increase in blood flow [18-20].  
Here we show that a similar calibration of the BOLD response can be obtained by having the subject perform 
cued breathing depth or rate changes, or by measuring normal, spontaneous variations in breathing during rest. 

Eleven subjects each performed 6 runs –  1) viewing a contrast-reversing checkerboard alternated with a gray 
fixation screen (blocked design), 2) resting with eyes closed, and performing various cued breathing 
manipulations: 3) breath-holding, 4) depth changes, 5) rate changes, 6) a single deep breath every 60s.  Heart 
rate and respiration were recorded with a pulse oximeter and a pneumatic belt, respectively.  Respiration 
volume per time (RVT) changes were estimated by dividing the difference between the maximum and 
minimum belt positions (the respiration volume) by the time between breaths (the respiration period) [4]. 
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A response function to model respiration induced changes was determined from the average response to the 
single deep breath.  This was convolved with the RVT changes and fit to the signal changes in the other tasks.  
For both task- and respiration-related analyses  the regression was repeated with different temporal shifts of the 
ideal response, and the latency that gave the best fit was used in each voxel.  Task-induced and respiration-
induced signal changes were compared, and a calibrated BOLD response was produced by dividing the task 
response amplitude by the normalized respiration response amplitude. 

Figure 16 shows that the amplitude of the task-induced BOLD response across the activated region of the visual 
cortex significantly correlated with the respiration-induced signal changes during breath-holding, as well as 
cued depth changes, rate changes, and natural changes in respiration depth and rate during rest.  Respiration-
induced signal fluctuations during rest were of the same magnitude, and in some cases larger, than breath-
holding induced changes.  Calibration of the task-induced BOLD fMRI response, which was similar for all 
breathing manipulations, shifted the peak of the visual activation from voxels near the sagittal sinus to more 
lateral and medial cortical regions.  Resting scans, or a wider range of breathing manipulations, can be 
performed more easily than an administration of CO2 or breath-holding, and can therefore enable the application 
of calibration across a wider range of subjects and patient groups. (Birn, Handwerker, Jones, Murphy) 

Figure 16: a. Respiration 
induced signal changes during 
rest. b. Visual activation (before 
calibration). c. Visual activation 
after calibration using 
respiration fluctuations during 
rest as the calibrating signal. d-
g. Correlation between task-
induced and respiration-
induced signal changes for 
active voxel in visual cortex. In 
this subject, breath-holding 
changes appear weakest, 
relative to the other calibration 
signals.  

2C-2. Better understanding of the respiration response function 
Work by our group (section 1B-3 and 1B-4) and others [21] have shown that variations in the rate and depth of 
breathing can cause significant fMRI signal changes.  These changes are particularly problematic for functional 
connectivity analyses, a technique that infers the connections of neuronal networks by measuring the correlation 
of low frequency (<0.1 Hz) BOLD-fMRI signal fluctuations between and within brain regions.  Respiration 
induced signal changes can occur in similar brain regions and at similar low frequencies.  In order to obtain 
resting-state activity maps that reflect fluctuations in neuronal activity exclusively, it is vital that these 
respiration-induced fluctuations are modeled or removed from the data.   

Regressing out a time-shifted estimate of the changes in respiration volume per time (RVT) resulted in no 
significant difference in estimates of functional connectivity (section 1B-3).  This is likely due to the fact that a 
sudden respiration change results in a relatively slow MR signal change (section 1B-4).  Modeling the 
respiration-induced signal change using the respiration response function derived from a single deep breath, 
however, has two additional complications.  First, the respiration induced signal changes during rest appear to 
be slightly faster than the respiration induced signal changes during cued breathing variations, as shown in 
Figure 17. Second, the respiration response function appears to vary across the brain, as shown in Figure 18.  
Future studies will investigate the temporal dynamics and spatial heterogeneity of signal changes induced by 
variations in breathing during rest.  These dynamics and spatial heterogeneity may also reflect baseline 
physiological information, of relevance both to the BOLD response and to more general physiologic 
abnormalities 



 16

#

Latency (s)
-20 0 20 40

Latency (s)

#

-20 0 20 40

RestCued Depth 
Changes

#

Latency (s)
-20 0 20 40-20 0 20 40

Latency (s)

#

-20 0 20 40-20 0 20 40

RestCued Depth 
Changes

 

Figure 17: Histograms (across 
voxels) of the optimal latency for 
fitting the RVT time course to 
the fMRI signal in each voxel.  
Left: cued depth changes Right: 
resting fluctuations in breathing.  
Note that respiration induced 
signal changes (correlated with 
RVT) are faster during rest. 

Future work will also investigate the effect of respiration changes on 1) functional connectivity estimates 
derived from independent component analysis; and 2) functional connectivity maps obtained during external 
stimuli or task performance, rather than during the resting state. 
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Figure 18: Left: Maps showing 
the latency of the respiration 
induced response (relative to the 
average RVT*RRF) for each 
voxel in one subject Right: 
average signal intensity time 
courses for voxels with the 
optimal latency within four 
ranges: (-10s to -5s, -5s to 0s, 0s to 
5s, and 5s to 10s). 

The spatial overlap between respiration-induced signal changes and the default mode network raises the 
interesting possibility of a closer link between respiration variations and neuronal activity.  This will be 
investigated by simultaneously measuring the respirations and neuronal activity during rest using MEG.  An 
estimate of the RVT will be correlated with the MEG power in various frequency bands, as well as the total 
MEG power.  A significant correlation will indicate that respiration induced fMRI signal changes reflect, at 
least in part, true underlying changes in neuronal activity. (Birn, Handwerker, Jones) 

2C-3. Validation of BOLD response variability calibration 
In a current study (section 2C-1), we have shown that the relative amplitude of the activation-induced fMRI 
response across the brain can be calibrated using either spontaneous fluctuations in breathing, or various cued 
breathing manipulations.  The accuracy of this calibration, both across the brain and across subjects, has not yet 
been fully determined.  In this study, we will address two questions: a) Does respiration based calibration 
improve the BOLD amplitude estimate? and b) Does respiration based calibration improve localization of 
function? To address the first question, we will use a well controlled stimulus such as alternating visual 
hemifield activation to modulate relative intensity of activation. To address the second question, we will use 
other “gold standard” functional localization techniques such as perfusion imaging, combined with accurate 
venograms to mask large vessel effects and compare these maps to the calibrated maps. Extending this 
technique to calibrate the BOLD response across subject will require two additional steps: 1) accounting for the 
actual amount that each subject varies his or her own breathing, and 2) accounting for a possible variation in the 
respiration response function across subjects. (Birn, Handwerker, Jones) 

 

Theme 3: Technology 

3A.  Introduction: practical advances 
SFIM has worked with FMRIF over the past four years to develop technology aimed not only at furthering 
applications but also in enhancing the ability to ask deeper questions related to interpretation of the fMRI signal.  
In the past, collaboration of SFIM and FMRIF has resulted in pulse sequence developments and hardware 
developments. Recently, we have been collaborating with FMRIF and Bob Cox’s group, the Statistical and 
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Scientific Computing Core facility (SSCC) to further advance real time measurement of fMRI signal well as 
real time complementary signals such as respiration, cardiac function, and other neurophysiologic measures. We 
have also been collaborating with Carlo Porro from Udine, Italy on spinal cord imaging, and have designed a 
spinal cord coil (constructed by Nova Medical) for this work. It is mentioned in the applications section.  

While we have scaled back our efforts on neuronal current imaging we have not stopped it. We have a neuronal 
current imaging study in progress involving the implementation of an adaptive filter methodology developed 
with electroencephalogram (EEG) methodology. 

Two papers highlighted in the progress report are a paper about neuronal current imaging in cell cultures as well 
as a paper that demonstrates the temporal signal to noise advantage of going to smaller voxel volumes.  

3B. Progress Report 

3B-1:  Neuronal current imaging of cell cultures 

Recent studies have shown evidence (phantom, animal, and human data) that MRI may be used to directly and 
noninvasively map electrical activity associated with brain activation [22-26]. Here, we show that MRI can 
detect changes that related to neuronal activity in blood free samples[27]. We use rat brain cultures in vitro that 
are spontaneously active in the absence of a cerebrovascular system – thus avoiding BOLD contamination. 
Single-voxel MR measurements obtained at 7 T showed correlation with multisite extracellular local field 
potential recordings of the same cultures before [PRE] and after blockade of neuronal activity with tetrodotoxin 
[TTX]. Similarly, for MR images obtained at 3 T, the MR showed changes only in voxels containing the culture. 

  
a                                                                                                        b 

Figure 19: a. EEG and 7T FID data. EEG and MR power spectrum of cell culture phase and magnitude before 
(black) and after (green) administration of TTX, a sodium channel blocker. Clear reduction of EEG, phase, and 
even magnitude power is seen after TTX administration. b. 3T MRI data showing reduction in specific spectral 
peaks with administration of TTX. In the figure A, is the frequency of interest. C is the frequency of the cryogen 
pump on the scanner.  

Two sets of experiments were performed. The results are shown in Figure 19. In the first experiment, MR 
measurements were obtained by using a 7T MR scanner and a free induction decay (FID) technique allowing 
high temporal resolution and sensitivity. The cultures were grown on 60-channel multielectrode arrays (MEA) 
allowing for multisite local field potential (LFP) recordings[28] before and after the MR sessions. MR signals 
were acquired every 100 ms, and were obtained from a single volume (40 mm3) that encompassed the culture. 
EEG measurements were obtained immediately before and after each MR session, which corresponded to the 
PRE and TTX states for the given culture. Power spectra were obtained from the EEG and MR time series for 
the PRE and TTX states. The spectra were compared between the two states to identify decreases in signal 
power that would indicate the suppression of MR signal variation after TTX infusion. These recordings were 
compared with MR measurements obtained from each culture. Correlation between signal power changes at the 
culture activation frequency range, obtained with both techniques, would be evidence that neuronal activity was 
directly detectable by MR. The second experiment was performed by using a 3-T MR scanner with a 
conventional imaging technique and no electrical recordings.  

The EEG data sets showed a decrease in signal power in the TTX state as compared with the PRE state (power 
decrease: 83.6 + 19.4%). The corresponding MR data sets also showed a decrease in the signal power in the 
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TTX state as compared with the PRE state; however, the effect was more pronounced for MR phase than for 
MR magnitude (power decrease 57.6 + 24.5% and 12.4 + 10.2%, respectively). The three EEG wash data sets 
showed the recovery of spontaneous neuronal activity in the cultures (wash signal power increase: 94.6 + 2.5%) 
When including all seven cultures for the MR data analysis, similar results were obtained (PRE vs. TTX signal 
power decrease for MR phase 60.5 + 21.5% and for MR magnitude 18.8 + 16.3%). (Bodurka, Petridou, Plenz, 
Silva) 

3B-2: High resolution improves fMRI quality in anterior MTL regions.  

A straightforward solution to correct for susceptibility-related signal dropout is to reduce intra-voxel dephasing 
and intravoxel tissue heterogeneity by reducing voxel size, especially in the slice (z) direction [29, 30]. 
However, because signal is proportional to voxel volume, decreasing slice thickness reduces signal-to-noise 
ratio (SNR) [29]. One solution to this problem is to acquire alternating thin slices on consecutive volumes and 
add these adjacent slices to recover lost SNR. Though this approach reduces signal dropout and may recover 
SNR, the gains in spatial and temporal resolution are limited.  

Recent advances in MRI receiver and coil technologies have led to the development of multi-element receive-
only surface coil arrays, suitable for whole brain imaging, that enhance SNR [31]. The 16-element array coil 
used in this report offers an overall 3-fold SNR improvement over a standard birdcage head coil during EPI 
acquisition [32]. We evaluated the effect of increasing fMRI spatial resolution by reducing slice thickness to 
determine if this would help to recover signal from regions containing anterior medial temporal lobe (MTL) 
[33]. We predicted that, at higher EPI resolution (thinner slices), the gain in image SNR would translate to 
improved EPI image-to-image stability (TSNR) and enhanced BOLD signal detection (CNR). However, the cost 
of reducing voxel volume is a reduction in the imaging volume coverage per unit time.  

 
a b 

Figure 20. Temporal a. signal 
to noise and b. contrast to 
noise comparison between 
2mm and 4mm (upper row) 
and 2+2 mm and 4mm (lower 
row) thick slices. Cool colors 
represent areas showing 
greater TSNR for 2 mm and 2 
+ 2 mm thick slices, and warm 
colors represent greater TSNR 
for the 4 mm slices.  

 

Animal electrophysiological and human lesions studies have implicated anterior medial temporal and frontal 
regions as critically involved such cognitive tasks as declarative memory function, reinforcement evaluation and 
executive control. Studies of these regions have been limited due to MR imaging artifacts that are particularly 
prominent in these regions. The relationships among signal-to-noise, slice thickness, and contrast-to-noise were 
experimentally investigated at 3 T using memory tasks known to activate MTL regions. Figure 20 shows that the 
greatest TSNR and TCNR increases are located in brain areas most sensitive to susceptibility artifacts.  

Thinner slices combined with higher coil sensitivity improved TSNR and TCNR throughout the ventral medial 
and lateral regions of the MTL, anterior temporal lobe and ventral orbital frontal gyrus. The improvement in 
TSNR using thinner slices was associated with decreased intra-voxel MR signal dephasing by suppression of 
exogenous magnetic field gradients effects at tissue interfaces. Improvements in CNR related to slice thickness 
reduction may involve interplay among the MR intensity, susceptibility artifacts, physiological noise reduction, 
and intravoxel tissue heterogeneity. The advances in the MRI receiver and reception array coil technologies 
offer new possibilities for robust high resolution and high field functional studies of MTL. (Bellgowan, 
Bodurka, Martin, Van Gelderen) 
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3C. Current and Future Experiments 

3C-1.  Perfusion measurements: proportionality to gray matter and comparison 
Because most grey matter (GM) voxels are generally not fully occupied by GM, the calculated perfusion is likely 
to be underestimated. At a high enough spatial resolution, the measured perfusion values should plateau, but they 
don’t – suggesting a much finer structure. We have implemented a double inversion recovery pulse sequence to 
null out CSF and WM signal in order to estimate the fractional volume of GM and compare with absolute 
perfusion measurements from Pulsed Arterial Spin Labeling (PASL) techniques. With a typical GM ROI, 
selected by T1, the average cerebral blood flow (CBF) is 100 ml/100 g/min and the average GM volume fraction 
is on the order of 55% at current resolution with a voxel size about 100mm3.  This is consistent with PET studies 
which report about 50 ml/100 g/min in which the voxel size is on the order of 200mm3. This implies that 
perfusion can reach 200 ml/100 g/min in pure GM voxels. 

Continuous ASL (CASL) creates tagged blood in finite space and utilizes time for building up the width of the 
tag whereas PASL inverts the spins in a finite time period and relies on available physical space to create the tag. 
Both techniques allow for quantitative estimation of CBF by incorporating a post-labeling delay. Additionally, 
Dynamic susceptibility contrast (DSC) MR imaging provide a simple way to estimate relative CBF (rCBF) as 
well as relative cerebral blood volume with high SNR using widely available pulse sequences. 

 
a 

 
b c 

d 

Figure 21: Scatter plot of CBF vs. GM volume, b. Scatter plot of PASL vs. CASL CBF, and c. a Scatter plot of 
ASL CBF vs. DSC rCBF of a typical slice with 45% confidence interval (red lines). d. PCASL images at 7T. 

A direct voxel-wise comparison study of QUIPSS II and CASL using a separate labeling coil at 3T was 
performed as well as comparison between QUIPSS II and DSC. The data comparisons are summarized in Figure 
21a-c. CASL and PASL data show a high correlation (CC=0.81) although PASL shows a trend of decreasing 
CBF toward distal slices probably due to imperfect slice profile effects. Partial volume averaging with CSF and 
WM would cause overestimation and underestimation of GM, respectively. DSC images show high rCBF values 
at voxels containing what are likely arteries. DSC data shows more widely distributed rCBF values at high T1 
voxels, which is not typically observed with ASL. The correlation coefficients between ASL and DSC data are 
0.45, 0.43, and 0.31 in the 5-slice volume, GM, and WM ROIs, respectively. In the low flow voxels, ASL shows 
slightly lower values than DSC. This is likely due to underestimation of WM perfusion with PASL whereas in 
the high flow voxels, DSC shows more voxels with higher values than ASL. In voxels where DSC is much 
greater than ASL, the mean T1 deviates further from the regression line, suggesting that these contain larger 
vessels surrounded by CSF. Voxels where ASL>DSC, the constant T1 suggests an even mix of GM and WM. 

Pseudo-continuous Arterial Spin Labeling (PCASL) allows for direct control of the tag duration, as in CASL, 
and can be performed with standard commercial scanners. The labeling period for optimal SNR efficiency 
increases with blood T1 and therefore field strength. We have implemented PCASL and have experimentally 
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determined that an approximately 3 sec labeling period is required for whole brain perfusion measurements at 
3T. For whole brain PASL at higher field strength, a longer than 1sec tag may not be feasible due to limited 
body RF/gradient coil size and fast flowing blood in labeling arteries. We have designed and implemented a 
version of PCASL with variable-rate selective excitation resulting in a 20% reduction in SAR. The reduction in 
SAR permits the application of PCASL at higher field strengths, allowing for longer labeling periods. Figure 
21d shows the 7T PCASL images. (Kao, Luh, Talagala, Wong) 
 
Theme 4: Applications 

4A. Introduction: Carrying Themes 1 - 3 through to Theme 4. 
Applications of fMRI that come out of SFIM are those that best utilize Themes 1 through 3 and the available 
technical expertise in SFIM and FMRIF. In the past four years, some exciting applications have been a direct 
result of advances in interpretation and methodology from SFIM. As an example, the application in 4B-1 
(Imaging subjects during a continuous speaking task) directly utilizes the techniques developed in 2B-2. The 
concepts of multivariate analyses developed in 2B-6 and 2C-5 are brought to bear in a novel and exciting 
manner in 4B-3 (Man & Monkey IT comparison). Lastly, the spinal coil that was developed in SFIM was used 
for functional MRI of the human spinal cord in 4B-2. 

Several applications that were carried out in SFIM are not mentioned in this report due to space limitations.  
Specifically, studies related to fear conditioning by David Knight and his post bac IRTA, Joey Dunsmoor, are 
not included, and studies involving decision making and auditory processing carried out by Anthony Boemio 
are not mentioned.  

4B. Progress Report 

4B-1. BOLD fMRI of the human spinal cord during willed motor actions 
Although the spinal cord is the output station of the central motor system, little is known about the relationships 
between its functional activity and willed movement parameters in humans. We investigated BOLD signal 
changes in the cervical spinal cord during a simple finger-to-thumb opposition task in thirteen right-handed 
volunteers, using a dedicated array of 16 receive only surface coil (developed through a collaboration between 
SFIM and Nova Medical, Inc.) on a 3T MRI system [34]. In a first experiment, shown in Figure 26a, we found 
significant fMRI signal increases on both sides of the lower cervical spinal cord while subjects performed the 
motor task at a comfortable pace (~0.5 Hz), using either hand. Both the spatial extent of movement-related 
clusters, and peak signal increases were significantly higher on the side of the cord ipsilateral to the moving 
hand than on the contralateral side. Movement-related activity was consistently larger than signal fluctuations 
during rest. 

a.    .  
 

b.  

Figure 26: a. Filtered (mean ± S.E.M.) 
time courses of fMRI signal changes 
from baseline, averaged around the 
movement (“perimovement plots”) in 
the whole spinal cord (top), the right 
side of the spinal cord (middle) and 
the left side of the spinal cord 
(bottom). b. Filtered time courses of 
fMRI signals averaged around the 
movement (“peri-movement plots”) 
during movements of the right hand 
at “low” or “high” frequency.  
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In a second experiment, shown in Figure 26b, we recorded spinal cord responses while the same motor sequence 
was performed using the dominant hand at two different rates (~ 0.5 Hz or 1 Hz). The intensity, but not the 
spatial extent of the response was larger during higher rates, and it was higher on the ipsilateral side of the cord. 

Notwithstanding the limited spatial resolving power of the adopted technique, the present results clearly indicate 
that the finger movement-related fMRI signals recorded from the spinal cord have a neural origin and that due to 
recent technological advances fMRI can be used to obtain novel and quantitative physiological information on 
the activity of spinal circuits. (Bodurka, Iannetti, Maieron, Porro, Tracy). 

4C. Current and Future Experiments 

4C-1. A self-paced overt response fMRI study 
Verbal fluency tasks are commonly used in neuropsychological tests to evaluate language abilities and the 
cognitive function of executive control.  These tasks require subjects to generate lists of words that begin with a 
specific letter (orthographic or phonemic fluency) or belong to a specific conceptual category (semantic 
fluency).  Behavioral and lesion studies have suggested that these two fluency tasks place differential demands 
on retrieval strategy and conceptual knowledge, and, as a result, place differential demands on frontal and 
temporal lobe processes.  Previous fMRI studies of verbal fluency have typically used covert word processing or 
cued single word production in order to avoid motion artifacts.   A key element of tests of executive function in 
verbal fluency, however, is the efficiency of accessing and retrieving semantic and phonemic information, 
which becomes evident when trying to generate multiple words as quickly as possible.   

In this study, we used a novel experimental design, consisting of 10s periods of task performance alternated with 
10s of rest, in order to minimize the task-induced motion artifacts and maximize the detection of true function.  
Activations during the fluency task were observed in anterior and superior left frontal gyrus, left inferior frontal 
gyrus (IFG), bilateral precentral gyrus, left fusiform, and bilateral parietal and occipital cortices.  Figure 25 
shows that, in agreement with our prediction, left IFG was more active for phonemic fluency, while anterior and 
superior left frontal gyrus, and left fusiform gyrus (areas typically involved in conceptual processing) were more 
active for category fluency.  Signal changes synchronous with the task, indicative of task-related motion, were 
located primarily in inferior temporal and orbito-frontal regions and were not significantly correlated with the 
delayed BOLD response.  Activation maps with minimal task-related motion artifact can therefore be produced 
during a self-paced overt speech task using the proper experimental timing.  Furthermore, these findings provide 
converging evidence suggesting that letter and category fluency performance is dependent on partially distinct 
neural circuitry. (Birn, Caravella, Case, Jones, Kenworthy, Martin) 

Figure 25: Activation during 
semantic (category) and 
phonemic (letter) fluency in a. 
left inferior frontal gyrus and 
b. left fusiform gyrus. Red 
regions represent greater 
activation during semantic 
fluency, blue regions 
represent greater activation 
during phonemic fluency. c-d. 
averaged fMRI time courses 
from left IFG and left 
fusiform, respectively.  e. 
Differences in activation 
amplitude between category 
and letter fluency in the left 
IFG and fusiform. 
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4C-2. Matching IT representation in man and monkey: comparing single-cell recording 
and fMRI. 

Monkey single-cell recordings have shown that primate inferotemporal (IT) neurons respond selectively to 
visual features occurring in natural images as parts of objects. A recent study has demonstrated that monkey-IT 
response patterns cluster according to natural categories[35]. Human neuroimaging has demonstrated 
conventional-category information in human IT cortex (in both focal activations and widely distributed 
response patterns). However, a focus on  category-average responses has precluded addressing if a categorical 
structure is inherent to the representations and, if so, what the natural categories are. 

This study combines human and monkey data from hi-res fMRI and single-cell recordings, respectively. We 
investigate response patterns elicited by the same 92 photographs of isolated natural objects in IT cortex of both 
species. Each stimulus image forms an independent condition. No predefined stimulus grouping is implied in 
either the experimental design or the core analyses to be applied. Because response patterns are difficult align 
between species or even among human subjects, we relate monkey and human representations by considering, 
for each pair of stimuli, the  similarity of the response patterns the two stimuli elicit. This approach also allows 
us to relate both species to computational models exposed to the same stimuli. 

        
Figure 27: IT response-pattern dissimilarity matrices. For each pair of stimuli, each matrix (human, monkey) color 
codes the dissimilarity of the two response patterns elicited by the stimuli in IT. The dissimilarity measure is 1-r 
(Pearson correlation across space). The matrices have been separately histogram-equalized (percentile units) for 
easier comparison. The two matrices are the product of completely separate experiments and analysis pipelines 
(data not selected to match). Human data is from 316 bilateral inferotemporal voxels (1.95×1.95×2 mm3) with the 
greatest visual response in an independent data set. Dissimilarity matrices averaged across 2 sessions for each of 4 
subjects. Monkey data is from >600 IT single cells isolated in two monkeys. 

Monkeys performed a fixation task while presented with the images in rapid succession [35]. Responses of 
more than 600 cells were recorded in two monkeys (right and left anterior IT cortex, respectively). Human 
subjects detected color changes occurring at fixation during image presentation while we measured response 
patterns with hires fMRI (3T, SENSE, voxels: 1.95x1.95x2mm3). 

Primate IT response patterns across these two species cluster in natural categories, with the animate-inanimate 
distinction explaining most variance and faces forming a very focused subcluster. Human-fMRI early visual 
response patterns and several low-level representations of the images (luminance pattern, color pattern, 
silhouette pattern, V1 model representation) exhibit no category clustering. We suspect that a computational 
model accounting for our results would need to have complex statistical category knowledge as might be 
acquired by supervised learning. Our results suggest that the extraction of information on membership in these 
behaviorally crucial categories constitutes a fundamental function of primate IT across species. Within the 
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category clusters, the primate IT code appears to represent more fine-grained object information. This 
information as well is consistent across species and may reflect a form of visual similarity. The close match 
provides some hope that data from single-cell recording and fMRI, for all their differences, may consistently 
reveal neuronal representations when subjected to massively multivariate analyses of response-pattern 
information. (Bodurka, Esteky, Kiani, Kriegeskorte, Mur, Ruff, Tanaka) 

Conclusion 
The work of this section is diverse yet integrated. There are several overriding objectives that are apparent 
throughout this report. The first is the effort to “squeeze” as much meaningful information as possible from the 
fMRI time series in as an efficient and complete manner as possible. The second is to develop powerful, 
innovative, yet practical tools for those who desire to perform fMRI at high resolution.  

Post docs including Anthony Boemio and David Knight have been performing highly innovative “application” 
research on auditory processing and fear conditioning respectively, that has benefited from being generated in 
this methods-focused environment. Other projects have also not been mentioned, including those from several 
students and post-bac IRTAs including Joey Dunsmoor, Tyler Jones, Marieke Mur, Doug Ruff, and Monica 
Smith. SFIM has been extremely successful in fostering independence in these students and post-bac IRTAs. 
They typically start independent projects within a year of arriving in SFIM. These post-bac IRTA projects, with 
the exception of Tyler Jones’, have focused on applications and remain central to the approach that SFIM 
fosters: multidisciplinary and aware not only of the technical and methodological limits of fMRI, but of the 
unique potential that fMRI offers. This approach is beneficial to methodologists and application specialists alike.  

We have also maintained our collaboration with the other sections in the Laboratory of Brain and Cognition. We 
continue to collaborate with Leslie Ungerleider with regard to the fMRI of decision making project and are 
starting an excellent collaboration with Alex Martin with regard to his autism project.  

In the future, we look forward to shifting much of our methods, interpretation, and applications work to the 7T, 
dealing with the challenges it presents, making use of the clear advantages in sensitivity and contrast that it 
offers, and also exploring the potentially new types of functional and anatomical contrast that may be revealed.  
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