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Section 1: Overview

The goal of the Section on Functional Imaging Methods (SFIM) is to better understand and more
efficiently extract neuronally and, ultimately, clinically-relevant signal from MR images and fMRI time
series. Most of our work since 2007 reflects this goal, as signal interpretation research and processing
method development have constituted the bulk of the 47 papers and 89 abstracts produced by SFIM
during this time period.

When the Unit (now Section) on Functional Imaging Methods (SFIM) was established in March of
1999, we had four ongoing themes (or projects): Technology, Methods, Signal Interpretation, and
Applications. Over time, these categories have become less accurate in describing our primary
research focus which had shifted more to MRI signal interpretation and methodology. Specifically,
since 2007, we have been working towards obtaining a deeper understanding of the resting state and
activation-based signal change characteristics, and designing better methods to extract neuronal
information from noise and irrelevant signal. For this reason, we have organized our report into three
themes: 1. Spontaneous fluctuations; 2. Activation dynamics, patterns, and mechanisms; and 3.
Anatomic MRI, perfusion, and fMRI calibration.

Theme 1: Since 2007, the field of “resting state fMRI,” (rs-fMRI), also known as the study of
“spontaneous fluctuations,” and a cornerstone of the field of “functional connectivity,” has exploded.
Figure 1 shows the number of papers published in this area vs. year. Just under 800 papers are
projected to be published on rs-fMRI in 2012 - about a third of all projected fMRI papers for this year.

This explosive rs-fMRI growth has resulted from a convergence of the

availability of high MRI scanner stability and sophisticated processing ::: [TTTTTITT1¢%]
methods, as well as a growing number of repeatable and relevant
findings. Nevertheless, fundamental questions related to the scanning
and processing methodology, neuronal and behavioral correlates, as
well as the variability of rs-fMRI remain. In addition, complete and
objective elimination of nuisance fluctuations remains an elusive goal. -
Our group is uniquely positioned to address these methodological and ole
interpretive issues. We have focused much of our effort towards
improving not only how resting state data can be acquired and Year
processed but how it can be interpreted. We are also exploring what
further information can be extracted and used. We plan to continue _

. L . . . papers (projected for 2012)
with this rich line of research - pursuing a deeper understanding of per year that involve resting
how correlated networks change across time scales as well as how | giate fluctuations, showing
networks can be classified and related to populations and to specific | an explosive growth.
characteristics of individuals.
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Figure 1: The number of

We have data demonstrating a combined multi-echo pulse sequence and ICA-based processing stream
for robust and automatic identification of relevant ICA components and for reduction of non-blood
oxygenation level dependent (BOLD) fluctuations. From this foundation, we have developed a rs-fMRI
based clustering of the entire brain into functional segments, as well as a method to minimize
ubiquitous motion-related confounds in resting state data. We have also characterized, using a sliding
window, the temporal variability of rs-fMRI correlation data. Lastly, we are developing methods for
classifying time-varying mental states as a function of network correlation structure.



Theme 2: A cornerstone of SFIM research is the improved understanding and use of characteristics of
the task-activated hemodynamic response. For over thirteen years, we have been probing the
dynamics, spatial patterns, behavioral correlation, and variability of this response. Perhaps our most
exciting and novel finding in this theme has been the discovery that even with a simple task, the entire
brain shows evoked regionally-specific and uniquely shaped hemodynamic responses[1]. To obtain
these results we averaged responses over nine hours from individual subjects performing a simple
discrimination tasks, then processed the data with no assumptions about hemodynamic shape.
Clustering of the responses showed clear responses throughout the brain. Also within this theme, we
demonstrate that reduction of the MRI flip angle - having several advantages over a higher flip angle -
does not result in a reduction in temporal signal to noise if physiologic noise dominates[2].

We also report here on our ongoing efforts towards better understanding the underlying mechanisms
behind and limits of multivariate analysis - considering each voxel as part of a pattern of activity
across relevant regions of the brain. Using a multivariate classification approach, we have been able to
infer sub-TR (100 ms) and sub-voxel (ocular dominance column) relative activation sequences, and
have been able to decode “yes” and “no” answers in subjects - both of these at about 90% accuracy.

Theme 3: Our group also values the importance of developing methods that are complementary to rs-
fMRI and fMRI. A new area of research has emerged that is based on the measurement of anatomic
MRI changes in individuals over short periods of time. We have established a processing pipeline for
assessing changes in anatomy with exercise and learning[3, 4]. We continue to develop perfusion
imaging methods, working closely with fMRI core facility. We have also developed an a high
resolution, off-resonance corrected arterial spin labeling (ASL) approach at 7T resulting in perhaps
the highest fidelity ASL-based perfusion images yet produced[5]. Regarding hemodynamic
calibration, we show the utility of using the Valsalva maneuver. This finding may lead to
implementation of a more simple and repeatable global calibration stress than that of hypercapnia.

Since 2007 our group has also produced a body of work that has involved a wide range of applications
of cutting edge methods, but due to space limitations, this research will not be described. These topics
include anatomic differences with autism[6], non-neuronal related release from adaptation[7], single
stimuli activation profiles[8], movement-related theta rhythm assessment[9], unconditioned
responses and implicit memory[10, 11], effects of task-correlated breathing[12], group differences in
connectivity[13], verbal fluency[14], and regions differentially associated with task difficulty and
decision making[15]. In the future, we plan to move more more aggressively towards development of
individual assessment methods. We believe that for fMRI to become more relevant to the mission of
NIMH, it has to aid in assessing psychiatric and neurologic disorders on an individual basis - in much
the same way that anatomic MRI is effective in identifying and monitoring an individual’s anatomic
brain pathology. We are well-positioned to take this goal on, as we are working at 7T with novel pulse
sequences and processing strategies.

This report is organized as follows: The themes are numbered 1 through 3. Within each theme, there
are three sub headings: A is a brief introduction; B is the progress report which describes projects
that have been completed after December of 2007 - most having resulted in published manuscripts;
and C describes ongoing, unpublished projects. At the end of each project description, the section
members and collaborators are listed in parentheses in alphabetical order, with the primary
investigator in bold print. Collaborators from the fMRI core facility or elsewhere are in red.



Section 2: Research Themes
Theme 1: Spontaneous Fluctuations
1A. Introduction: An abundance of information and a proliferation of methods

As mentioned in the overview, a major focus of SFIM has been the better understanding of resting
state fluctuations and the development of methods to more effectively separate neuronally-relevant
fluctuations from artifactual fluctuations. In several areas, our work has had an impact on the field.
Specifically, we have shown that global signal regression causes artifactual negative correlations in
major networks[16], introduced a novel multi-echo technique that enables objective and clean
selection of ICA components[17], and uncovered a unique periodic relationship between network
fluctuations[18]. This theme contains a relatively large proportion of ongoing, unpublished work:
Specifically we demonstrate preliminary results using seed voxel analysis to clarify cross-hemisphere
motor connectivity in single subjects; introduce an effective resting state-based brain parcellation
method that stems from our multi-echo based independent component analysis (me-ICA) approach;
characterize, in detail, the dynamics of resting state networks, identifying the most and least stable
pairwise network connections; introduce a promising method for characterizing cognitive states
using resting state data, and lastly; propose an effective solution, also using me-ICA, to recently
highlighted motion-related problems in resting state data interpretation.

1B. Progress report
1B-1. Impact of Global Signal Regression on resting state data.

The basis of rs-fMRI is the identification and characterization of
the MRI fluctuations that relate to spontaneous and correlated
neuronal activity. A major challenge is that many non-neural
signals cause correlated fluctuations in fMRI time series. These
artifactual signals include breathing and cardiac-related signal
changes, head movement, and MRI scanner noise. One method to

Correlation with PCC ROI - With Global Signal Regression

Correlation with PCC ROI - Without Global Signal Regression

reduce these nuisance signals has been to average the signal over , (W,R
the entire brain - the global signal - for each time point, and and AXETN ( \
regress this averaged time series out of the data. The assumption - , ﬁ\/

is that neural activity does not synchronously happen
everywhere in the brain at the same time. Therefore, it follows
that any fluctuations in the glol.oa.l 31gnal. can be removed, as they region in PCC are shown with and
do not represent neuronal activity. While global signal removal | =% 0+ global signal regression.
does reduce temporal fluctuations, we demonstrate, as shown in | The default mode network is
Figure 2, that it introduces artifactual anti-correlated networks | visible both with and without
[16]. Several papers that have had global signal regression as a | global signal regression, but a
processing step have often showed strong anti-correlated | negatively correlated network is
networks of brain regions[19]. We demonstrate both only visible after the regression.
theoretically and experimentally in our paper that global signal

regression artificially creates negative or “anti-correlated” resting state signals. Our manuscript has
had a high impact on the field. It has also elevated the discussion in the fMRI community of which

Figure 2: Correlation to a seed




processing steps introduce or eliminate artifacts with minimal signal corruption. (P. A. Bandettini, R.
M. Birn, D. A. Handwerker, T. B. Jones, K. Murphy)

1B-2. Multi-echo acquisition to sort ICA components and to minimize motion effects

An ongoing challenge has been to remove the large fraction of non-neuronal fluctuations rom rs-fMRI
time series. Work on characterizing and removing non-neuronal fluctuations has focused on time
series modeling based on external measures of physiologic processes. In this study, we fully embrace
and carry forward the proposed work in our last BSC report from 2007 on using TE-dependence to
separate BOLD from non-BOLD time signal so that non-BOLD - thus non-neuronally relevant -
fluctuations can be removed. BOLD signal changes are manifest as changes in T2* which can be
characterized as showing a linear increase in fractional signal change with echo time (TE). Motion,
system instabilities, and inflow effects can be manifest as changes in longitudinal relaxation, T1 or
proton density, So but not typically T2*.

Here we show the utility of collecting multi-echo EPI (me-EPI) to clearly separate BOLD signal
fluctuations from non-BOLD signal fluctuations. We collect three-echo me-EPI data and then apply
independent component analysis (ICA) on the echo-concatenated time series data resulting in each
ICA map consisting of three images, each collected at a different TE. On a voxel-wise basis, the change
of the component’s percent signal change with TE is fit separately to AR2* and ASo signal change
models, and the fit quality is computed as an F-statistic. Each component is characterized by two
metrics, k for its BOLD likeness and p for its non-BOLD likeness. Figure 3 shows that that resting state
BOLD components and non-BOLD noise components are differentiable according to these metrics.

When the x values of all of the ICA components are sorted and plotted as a spectrum, high k and low x
value regimes are clearly evident, separated by a boundary (an elbow in the curve). When the p values
corresponding to x values are given, it is clear
axvs. CA rank b x spectrum ¢ kspectraacrosssubjects | that the majority of components have high k and
‘ N~ | | low p, or vice-versa, thus distinguishing BOLD
and non-BOLD components. The differentiation
of BOLD and non-BOLD components not only
enables sorting of ICA components for
subsequent clustering analysis (shown in IC-2)
but also allows for the use of low k component
time series for de-noising in task-based fMRI or
seed based rs-MRI
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- _ ) We demonstrate in our manuscript introducing

%i) ;ssczfl?rl;)(vi,ﬁgn}fes;’éﬂ?gﬁd){s a:;i g?glfi?ek\]/?/}i,t}f removing the regressors identified as those with
two distinct regimes: high k (k>20) and low x low x components is more effective than

(kb20), with low k components on a linear tail. () k | Standard methods involving modeling and
spectra for 8 subjects. (d) Example of high k and | regressing out the noise - particularly in
low k component maps. Each panel shows the time [ problematic regions such as hippocampus,
course and thre_sholded AR2* map. Components are |  thalamus, and brainstem.

annotated with x-score, p-score, and ICA
component number.

It has recently been shown that in-scanner




subject head motion leads to
systematic patterns of false
positives in population-level
rs-fMRI analysis[20]. This
artifact is worst for group
contrasts of cohorts with
different levels of in-scanner
motion (i.e. adult vs. child,
healthy vs. pathological), and
is a potential roadblock to
further resting state fMRI -
based research.
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Here we show that me-ICA
enables a principled and —un = - -

robust approach to e
minimizing the problem of
spurious functional

connectivity (FC) patterns

caused by motion and other Figure 4(A) Comparison of me-ICA to standard preprocessing for four

different seeds: default mode (posterior cingulate), right hand, Broca’s

artifacts. After decomposing
multi-echo data with ICA and
separating BOLD from non-
BOLD components based on
echo-time (TE) dependence,
the BOLD-based ICA
components are used to
compute FC. We then focus

area, left V1. Standard FC correlation patterns required high thresholding
to obtain interpretable maps (p<10-7, FDR q<10-6). (B) False positive
rates for contrasts of randomized groupings with increasing motion, from
left to right: no average group motion difference; 50% motion bias in
grouping; motion as fixed effect (i.e. high motion vs. low motion). For each
region, mean error rate (in voxels) is shown as bar height. Percentage of
groupings with non-zero false positive rate shown under bar graph for
me-ICA/standard processing. (C) Patterns of spurious FC when using
motion as a fixed effect.

exclusively on the BOLD ICA
components. Computing an
individual-subject me-ICA functional connectivity map for a region of interest (ROI) involves
computing the correlation of its ICA series with the ICA component series of all other voxels. In contrast,
the typical approach to computing FC maps involves motion regression, band pass filtering, and then
Pearson correlation.

The me-ICA seed-based FC approach was compared to standard seed-based FC approach at the
population level. Thirty-three subjects were scanned for 10 minutes EPI during rest (Siemens 3T Tim
Trio, 32-channel). Figure 4 A shows analyses for the full cohort. Figure 4 B is a comparison of me-ICA
and standard processing. For all ROIs, me-ICA FC group contrasts are populated in only 10% of all
random and biased groupings, and with small error rates, if any (20 voxels on average).

No increase in me-ICA FC false positive rate is found as groupings are increasingly biased according to
motion. In contrast, standard FC group contrasts have increased false positive rates as groupings are
biased by motion. We conclude that me-ICA FC is a principled and straightforward solution to the
problem of spurious FC due to motion artifact. (P. A. Bandettini, E. Bullmore, N. Brenowitz, |. W. Evans,
S.J. Inati, P. Kundu, W.-M. Luh, V. Roopchansingh, Z. S. Saad)



1B-3. Periodic changes in correlation.

In most rs-fMRI studies, data are collected for 5-10 minutes and analyzed across the entire scan

duration to create connectivity maps with high
reproducibility. However, when observed over
shorter windows of time, correlation strengths
between regions show temporal variations. In this
study[18], we show that these changes in correlation
strength appear to vary in a periodic manner.

Figure 5 shows this variation in correlation for two
slices in the brain. Figure 5A shows the posterior
cingulate cortex (PCC) region used for the seed time
course. Figure 5B shows the correlation map obtained
using that seed over the entire ten minute time
course. Figure 5C shows the changes in the
correlation with the seed voxel in 32 sec windows.
Figure 5D shows the time course of the seed and
another region in the motor cortex (not typically
correlated with anterior cingulate). Figure 5E shows
the correlation values between the seed and the
motor cortex over time, showing an average of about
zero yet semi-periodic changes across a wide range of
positive and negative correlation values.

By calculating the power spectrum of these
correlation time series, we show that the correlation
fluctuations appear to have several distinct frequency
peaks. While all correlations are to a single PCC seed,
the peak correlation change frequency varies by brain
region. Figure 5F shows relative power spectrum
magnitude maps at four frequencies. The red regions
for each column of slices in a volume are the peak
frequency magnitudes corresponding to the sliding
window correlation change power spectrum below.

While we cannot fully explain this periodicity, we
should note that this does not imply that networks
are necessarily “communicating” with each other.
Rather, this appears to be a “beat frequency” effect
that might prove useful in probing the most relevant
of network fluctuation frequencies. Also, this
approach might open up a methodology for probing
differences in frequency content between regions.
(P.A. Bandettini, ]. Gonzalez-Castillo, D. A.
Handwerker, V. Roopchansingh)

Seed Full
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Figure 5: (A) Posterior cingulate (PCC) seed
region (red highlight) that was used. (B)
Correlation map created from the seed using the
entire ten minute time series. (C) Correlation
maps created over 32 s temporal windows|
centered at the time points in the connected
figures D and E. (D) Sample time series from the
seed region (red) and a voxel at the green|
crosshairs (motor cortex region). (E) Correlation|
values over time for the sample time series show
that the temporal correlation varies over time
but has minimal dependence on correlation
window. (F) Power spectrum of correlation
changes with PCC. Maps in each column|

correspond to frequency peaks.




1C. Current and Future Experiments
1C-1: Spatial heterogeneity of between-hemisphere motor cortex correlation

Analysis of correlated rs-fMRI signals have revealed detailed patterns of functional organization.
Studies taking advantage of the increased SNR using 7T MRI scanners have been able to discriminate
functional networks at increasingly fine scales along cortical folds and layers. In this preliminary
study, seed-based correlation maps using ROIs along the sensorimotor strip are tracked in order to
assess detailed, localized variations in motor strip connectivity. A goal of this study is to determine if
regionally specific connectivity differences, as revealed through rs-fMRI of single subjects exists
between left and right motor regions. Using an EPI sequence at 7T with a 32-channel phased array
coil, four 10-minute rest runs and four 5-minute task activation block runs where subjects were
instructed to move, during separate blocks, their tongue, fingers, eyebrows, or toes in 16 sec intervals
were acquired (TR=2; 2mm isotropic; 96x96x54 grid). Runs were aligned and mapped to the surface
with seed regions (~ 0.4 cm3) drawn along the motor cortex of the each hemisphere using the block
results from the task runs within sulcal parcellations as landmarks. The principal singular vectors of
the resting-state run time series within the drawn ROIs were used as seeds for correlation maps to
the rest of the brain. Series of correlation maps along both hemispheres for each resting state run
were rendered on the surface map to track changes in correlation with changes in seed regions.

Seed-based correlation analysis of resting state data revealed strongly localized, bilaterally symmetric
correlations along the entire sensorimotor strip, yet showed substantially reduced correlations in
areas corresponding to the hand in agreement with non human primate results using anatomic
tracers[21]. These results suggest that, in spite of regional differences in factors such as baseline noise
level and blood volume, the resting state correlation between time series across regions appears to be
a sensitive measure of the “degree” of connectivity
between areas. This finding reveals that resting state

~% correlation analysis in a single subject yields

previously unknown, yet literature-supported,
functional organization and degree of connectivity in
B roes the human sensory-motor area.

Fingers
Thumb

& ;{2 O eyebrow
B 8 e We plan to continue this seed voxel exploratory

approach to assess spatial variations in correlations
across a wide range of brain networks. Specifically, we
will explore other networks that are known to have
varying colossal connections to determine how widely
applicable this observation is. We will also attempt to
use this precise seed voxel tracing approach to probe
" i " functionally related regions that have colossal
connections versus those that don’t. Lastly, we will
Figure 6: (A) Cross-hemisphere resting state | perform diffusion tensor imaging-based tract tracing
correlations and areas of activation with | \vith tract seed points determined from the spatially
specific movements in flattened and non- . L .
variant connectivity maps as an approach to integrate

flattened display. (B) Color coded motor stri
locations I;n% (cz)rresponding Cross‘f and validate DTI and rs-fMRI information. (P.

hemisphere resting correlation magnitude. Bandettini, P. Guillod, S. J. Inati, P. Kundu)




1C-2: Clustering of resting state correlations

A major goal in rs-fMRI is the whole-brain mapping of functional cortical networks down to the scale
of voxels from a single dataset. Promising results have been obtained on highly subject-averaged data,
however, our ultimate goal is to use the characteristics of these networks as individual biomarkers.
Towards this goal, we have developed an approach, based on our me-ICA method (from 1B-2) that
converges on stable and consistent areas with very few averages. The maps that we produce can also
predict subject-specific activation patterns associated with activation-based paradigms.

Seven subjects were scanned with 10 min rest runs and with several task-activation runs consisting of
the following paradigms: face vs. objects differentiation, sense vs. nonsense sentence differentiation,
tongue vs. toe movement. Imaging was performed on a General Electric (GE) 3 Tesla GE Signa HDx

MRI scanner with a GE 8-channel receive-only
head coil. Anatomical images were acquired
using a T1l-weighted MPRAGE sequence.
Functional images were acquired with a multi-
echo EPI sequence (TR 2.5 s, flip angle 90, matrix
size 64x64, in-plane resolution 3.75 mm, FOV
240 mm, 31 axial slices, slice thickness 4.2 mm
with 0.3mm gap, acceleration factor 2). Three
echoes were acquired with the shortest possible
echo times, TE = 15ms, 39ms, and 63ms. Multi-
echo data were analyzed with me-ICA to reveal
BOLD ICA components and remove non-BOLD
ICA components. This non-BOLD component
removal is fundamentally important in the
success of these results as the clustering method
was based on the voxel-wise grouping and
differentiation based on its unique belonging
“signature” to each ICA component.

This exquisitely detailed hierarchical structure is
shown in Figure 7. Large modules (from low
level clustering, i.e. k=10 clusters) reflect
classical neuroanatomy. These modules
correspond to regions such as superior, middle,
and inferior frontal and temporal gyrii;
premotor, motor, sensory, and insular cortices;
cingulate and visual areas, etc. Smaller modules
(from high level clustering, i.e. k=350 clusters)
reflect functionally specific areas. These modules
correspond, to regions in the motor cortex such
as lateralized hand, foot areas, as well as
language areas (Broca’s and Wernicke’s), visual
areas (V1/V2), and many others. The novel
implementation of hierarchical clustering
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Figure 7: (A) Functional organization (n=7) at
increasingly high levels of clustering. Lower cluster
levels show large modules. Higher cluster levels
show increasing differentiation of functional areas
within color ranges determined by lower level
clustering. (B) Labeled map of the k=350 functional
organization. (C) Comparison of task activated
regions and resting state clusters in a single subject,
showing a close correspondence.




approach carried the organization of low level clustering to high level clustering in terms of cluster
index ranges. This means that color proximity (i.e. on a color bar) of cortical areas indicates functional
relatedness, and color separation indicates functional distinctness. This coloring scheme greatly aids
in interpretation of high level clustering, especially in mapping major functional boundaries.

It was found that cluster maps converged as the number of subjects used in group analysis was
increased. A stable organization was achieved using only 7 subjects. This indicates a large increase in
statistical power of this method over prior methods that do not use me-ICA, ICA-based clustering, and
cortical surface-based averaging. Since analysis was conducted on the cortical surface, the rapid
convergence also suggests strong conservation of functional organization on the cortical sheet.

This novel implementation of hierarchical clustering was able to create a community structure of
brain organization, showing how large modules at low levels of clustering are related to smaller
modules at high levels of clustering. We found that the 30-50 BOLD components from individual
subject high dimensional me-ICA have localization to specific, finely delineated functional areas. The
ability to consistently identify functional areas without functional localization tasks could also be of
value as a biomarker for individual differences or disorder characterization. (P. A. Bandettini, N.
Brenowitz, J. Evans, P. Guillod, S. ]. Inati, P. Kundu, W.-M. Luh)

1C-3: Characterization of dynamic behavior of resting state networks

An assumption has been that connectivity patterns are stable for the duration of the scan. The

purpose of this work is to carry forward

our work in 1B-3 and characterize the

temporal variation of resting state @ t

connectivity within a continuous 1 hour | |§

resting state scan. From this we are able £

to determine the most and least stable g

networks. We first characterize ||§,, o
3

connectivity matrix variability as a
function of scan duration and then map
the most and least stable pairwise
connections.

SCAN DURATION [mins

After segmenting the brain into 100
functional units for use in connectivity
matrix creation, we compared pairs of
matrices that were created by averaging
the signal over varying amounts of time
ranging from 2 to 30 minutes. Figure 8
shows the correlation between each of the | Figure 8. (A) Reproducibility of within-subject
pairs of matrices. The correlations begin | connectivity patterns as a function of scan duration. (B)
to show decreasing similarity below 10 Representative connectivity matrices for durations of 2min,
minutes, and continue to drop sharply 7.5min,.1.5min and 30min. It can be'ol'aserved that
connectivity patterns become more similar as scan
duration increases. For durations below 5 minutes,
reproducibility decreases.

down to 2 minutes.

To further dissect the variability of the
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cortical connections, we used a

Prd o sliding window correlation analysis
LB . with a window duration of 1 min and
. a window step of 1 s. We then sorted

'~:.“": N the pairwise connections from most

vt to least variable. While some
%i connections remain quite stable
%’g;:* across time, others seem to vary
\\onudes 4 considerably. Figure 9 A shows most

A B stable connections across all
subjects. It can be observed that
Figure 9. (A) Most stable connections at the temporal scale of 1 stable connections tend to by inter-

min. Lines correspond to connections c1a551f1ed_as stable in at hemispheric and symmetric. Figure 9
minimum of 10 out of 12 subjects. (B) Most variable connections ;

at the temporal scale of 1 min. Lines correspond to connections B shows Conpectl_ons that _Vary the
classified as stable in at minimum of 10 out of 12 subjects. most across time in all subjects. The
pairwise connectivity patterns in this

case are quite different, appearing to
correspond to these between subcortical regions and high order cognitive regions in frontal and
predominantly left parietal cortex.

These network variability maps provide a unique insight into the dynamic brain activity during
resting state. We will continue to explore these across timescales and begin to explore subject-wise
and behavioral correlates as they may reveal insights into principles of dynamic brain organization.
(P. A. Bandettini, C. Chang, J. Gonzalez-Castillo, D. Handwerker, S. ]. Inati, M. Robinson, V.
Roopchansingh, Z. S. Saad, Z. Yang)

1C-4: Detection of mental states based on connectivity patterns.

An approach to understanding the biological significance of dynamic changes in connectivity patterns
is to investigate whether they correlate with explicit behavior. If observed changes in functional
connectivity reflect changes in the functional organization of the brain as its switches from one task or
mental state to another; then whole-brain functional connectivity patterns should allow us to
ultimately classify a subject’s cognitive state or task being performed. To begin to evaluate this
possibility, we ask subjects to engage in different tasks (2-back, simple math, watching a video, and
rest) while being continuously scanned.

A 60 s sliding window, with step length of 1 sec was used. Correlation analysis obtained snapshots of
connectivity across the whole brain as scanning progressed. For each sliding window, the upper half
of the connectivity matrix was transformed into a vector. Vectors were concatenated horizontally to
produce a new matrix (#windows x #Connections) that contained information about the evolution of
connectivity patterns as shown in Figure 10. Because of the high dimensionality of this matrix (each
window has 4950 connectivity values), it is very difficult to evaluate if different tasks are associated
with different patterns of connectivity. For identification and visualization, we used multidimensional
scaling (MDS) to reduce the dimensionality to a 3D space.

In Figure 11 each window is represented as a dot in a 3D space. Sliding windows that contain
transitions between tasks have been removed. Remaining points, after removal of transitions, have
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been colored according to the task the
subject was performing during that
period of time (gray = rest; cyan = 2-
back task; green = math computation;
yellow = video observation). The figure
suggests that brain connectivity does

MULTIDIMENSIONAL change with task, and are stable during

SCALING

\ performance of the task. Unfortunately a

1491 windows X 4950 connections

(B .

[Meaningless Dimensions] ? . <
X [Pair-wise Connections] z .

0.5
1491 windows X 3-D Space

o

DIM 3 [Random Units]

Figure 10. (A) Evolution of whole-brain connectivity as
scanning progresses using sliding window analysis (win
length=60s, win step=1s). A row in this matrix corresponds
to the temporal evolution of the connectivity values for a

!
oo
o

0

given pair-wise connection. A column in this matrix DIM 2 [Random Units] 05 o4 DIM 1 [Random Units]
corresponds to the overall connectivity pattern of the brain REST VIDEO

in a given window of time. (B) Result of applying non-metric

multidimensional scaling to the matrix on (A). After MDS, Figure 11. Multi-dimensional scaling
each window can be shown as a point in 3 dimensional space. results. Each 3D time point

corresponds to a different 1-minute

clear separation of tasks does not occur for all subjects. The sliding window. Task transitions have
been removed for clarity. Each color

use of more differentiable tasks, other dimensionality corresponds to one of two time
reduction techniques, or prior selection of most or least | periods in which the subject was
variable networks may help improve segregation of tasks | performing each task.

based on connectivity profiles. (P. A. Bandettini, C. Chang, ]J.
Gonzalez-Castillo, D. Handwerker, S. |. Inati, M. Robinson, V.
Roopchansingh, Z. S. Saad, Z. Yang)

Theme 2: Activation Dynamics, Patterns, and Mechanisms
2A. Introduction: Pushing the limits of what we can extract with hemodynamics

After twenty years of investigation on the activation-related fMRI signal changes, it's encouraging that
new information continues to be extracted as methods are developed and tested. Our group has made
several contributions in this area since 2007. First, we have discovered that with sufficient amount of
averaging and with a model-free approach, nearly the entire brain is uniquely activated by even
simple tasks. This is perhaps our highest profile paper in the past few years. Next, we have pioneered
a method, known as representational similarity analysis, to characterize fine scale patterns of
activation that reside within blobs. These patterns are proving to be information-rich and
complementary to the mapping large scale activations. With regard to our MRI-based work, we have
demonstrated that, in typical studies where physiologic noise dominates, a wide range of non-Ernst
angle flip angles can suffice without a loss in functional contrast to noise. Our current and future work
primarily involves carrying forward fMRI “decoding” methods. Specifically, we have developed a
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method for differentiating with high accuracy, sub-voxel sub-TR onset times - differentiating 100ms
onset differences between left and right ocular dominance column activation. Also, towards the goal
of exploring the sensitivity limits of “decoding” approaches, we have developed a method for
accurately differentiating simple “yes” and “no” cortical responses.

2B. Progress report
2B-1. Finding activation in almost the entire brain with relatively simple tasks

In the past, task-based functional MRI (fMRI) studies have supported a localizationist view of brain
function, as typically, only a handful of regions have shown significant activation with a task or
stimulus. Here, this view is challenged with evidence that under high contrast to noise conditions,
fMRI activations extend well beyond areas of primary relationship to the task - appearing in over 95%
of the brain for a simple visual stimulation/attention control task[1]. Moreover, we show that
response shape varies across regions and can deviate substantially from a typical canonical response.
Whole-brain parcellations based on those response shape differences produce distributed clusters
that are anatomically and functionally meaningful, symmetrical across hemispheres, and reproducible
across subjects. This result has the potential to fundamentally alter how we understand and model
brain activation.

Three subjects were scanned on a General Electric 3T MRI scanner. All subjects underwent 100
functional runs, which consisted of five blocks of stimulation. Each block consisted of 20 s flickering
checkerboard at 8 Hz + letter/number discrimination task and 40 s of rest. For the letter/number
discrimination task, subjects responded using a response box with their right hand. Data were
analyzed with AFNI (pre-preprocessing, and statistical analysis), and MATLAB (clustering).

We used three response models for activation: 1. A sustained response model (SUS) consisting of the
convolution of a gamma-variate function with a boxcar function that follows the experimental
paradigm; 2. An onset+sustained+offset model (0SO) that includes transitory responses at blocks
onset/offsets in addition to the sustained response; and 3. An unconstrained model (UNC) consisting
of 30 impulse functions spanning the duration of a single on/off cycle (60 s) and therefore setting no a
priori constraints on response shape other than agreement with task periodicity.

We found that the extent of activations
increased significantly with number of
runs (Nruns) inputted to the analysis as
well as with a relaxation of the
predictive BOLD response shape o Bos o 06 || o unont2
. . B e R T e — ottt | | i
constraints. Figure 12 shows how P B S R " Ly — e
. . . . :Bo_u . POSITIVE & NEGATIVE - 80 sagaﬂagees 80
activation extent increased with & .,...-gsxssss
'H

increases in number of runs. For all | [f« zo\ gixgmsa
: o : 33383888888 )
subjects, significantly active voxels at | [z 8533”“

Nruns = 100 represent on average over
71% of the imaged brain for the SUS Figure 12: Activation extent results for the three response

model; and over 89% for the other two | models. A-C show results for Ppon< 0.05 and D-F for Prpr <
models at Prpr < 0.05. Conversely, for | 0.05. The significantly active volume increased with number

Nruns = 5, which represents a typical | of runsin all subjects and models.
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number of runs per condition in fMRI experimentation, activated voxels represented ~20% of the
imaged volume at PFDR < 0.05 for the SUS analysis and between 35 and 44% for the other two
analyses. Active voxels are defined as those where the model accounts for a significant amount of
variability in the data (F-stat) at Prpr < 0.05 or Pgonf < 0.05. Within-subject averaging reduced random
noise while keeping non-random signal levels unaffected. Statistically significant signal changes
(sometimes less than 0.2%) time-locked with the task could be observed in almost every location of
the brain when 100 runs were averaged. Response shape and magnitude varied significantly across
regions. Some regions responded in a sustained positive manner for the whole duration of the task
epochs (e.g., occipital, insular and left motor cortex), but others responded more prominently during
task-switching periods (e.g., occipito-parietal junction). Several regions responded with negative
deflections during active epochs (e.g.,, some parietal locations, right motor cortex). In regions that
responded similarly (e.g., sustained), there were differences in onset, offset, and steady-state shape.

Parcellation of the whole brain activation data was accomplished as follows: Voxels with similar
response profiles were spatially clustered using both k-means and hierarchical clustering on the
voxel-wise BOLD responses calculated using all 100 runs per subject. Parcellations were computed
only for cortical and subcortical gray-matter voxels, excluding the cerebellum. Figure 13 shows the k-
means decomposition for a representative subject and k=20. The resulting topography is symmetrical
across hemispheres, anatomically meaningful, and reproducible across subjects. Hemispheric
symmetry is evident in the
occipital cortex, superior
temporal cortex, anterior insula,
hippocampus, and in subcortical
structures, such as the thalamus
and the putamen.

Primary visual and primary
hand motor cortices correspond
to different clusters. The visual
cortex is segmented into several
regions both in the anterior-
posterior (A-P) and medial-
lateral (M-L) directions. For
example, in the M-L direction V1
and V5 are segregated. In the A-
P direction, V1 and higher visual
processing areas closer to the
parieto-occipital junction are
also part of different clusters. In
most cases, clusters did not

K'(T(E%‘)s appear in the form of a single

contiguous agglomeration of
voxels but as distributed sets of

Figure 13: Color-coded (A) axial and (B) sagittal views of k-means .
clusters (k=20) for subject 3. (C) Color-coded hemodynamic nodes. Grou.plng .patterns g0
responses for each cluster. beyond hemispheric symmetry,
and in some cases resemble
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connectivity patterns similar to those present in resting-state data. For example, the area CL03
resembles a motor control network with nodes in the left primary motor hand cortex, medial
supplementary motor cortex, and postero-lateral thalamus. Cluster CL02, with nodes in the bilateral
infero-lateral parietal cortex, posterior cingulate, and ventro-medial frontal cortex, resembles the
default-mode network. Figure 13 C shows cluster-averaged responses. All clusters display responses
time-locked with the experimental paradigm.

These findings highlight the exquisite detail in fMRI signals beyond what is normally examined, and
emphasize both the pervasiveness of false negatives, and how the sparseness of fMRI maps is not a
result of localized brain function, but a consequence of high noise and overly strict predictive
response models. It also shows how inter-regional variability in the hemodynamic response to tasks
can be used to functionally parcellate the whole brain in a manner similar to resting-state scans.
Differences in functional parcellations between task-state and resting-state may provide good
markers for identification of clinical populations. We plan to continue this work at high field, using
me-EPI, and with higher sensitivity RF coils in hope that we can achieve a temporal signal to noise
such that the necessary scan duration to obtain these results is more realistic. We also plan to explore
the reproducibility of these results with other tasks. (P. A. Bandettini, N. Brenowitz, J. Gonzalez-
Castillo, D. Handwerker, S. J. Inati, Z. S. Saad)

2B-2. Representational similarity analysis

Monkey single-cell recordings have shown that primate inferotemporal (IT) neurons respond
selectively to visual features occurring in natural images as parts of objects. Kiani et al.[22] have
demonstrated that monkey-IT response patterns cluster according to natural categories. Human
neuroimaging has demonstrated conventional-category information in human IT cortex in both focal
activations and widely distributed response patterns. However, a focus on category-average
responses has precluded addressing if a categorical structure is inherent to the representations and, if
so, what the natural categories are.

This study[23] combines human and monkey data from hi-res fMRI and single-cell recordings,
respectively. We investigate response patterns elicited by the same 92 photographs of isolated
natural objects in IT cortex of both species. Each stimulus image forms an independent condition. No
predefined stimulus grouping is implied in either the experimental design or the core analyses to be
applied. Because response patterns are difficult align between species or even among human subjects,
we relate monkey and human representations by considering, for each pair of stimuli, the similarity
of the response patterns the two stimuli elicit. This approach also allows us to relate both species to
computational models exposed to the same stimuli.

Monkeys performed a fixation task while presented with the images in rapid succession. Responses of
more than 600 cells were recorded in two monkeys (right and left anterior IT cortex, respectively).
Human subjects detected color changes occurring at fixation during image presentation while we
measured response patterns with hires fMRI (3T, SENSE, voxels: 1.95x1.95x2mm3).

Figure 14 A shows that IT response patterns across these two species cluster in natural categories,
with the animate-inanimate distinction explaining most variance and faces forming a very focused
subcluster. Human-fMRI early visual response patterns and several low-level representations of the
images (luminance pattern, color pattern, silhouette pattern, V1 model representation) exhibit no
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Figure 14: (A) IT response-pattern dissimilarity matrices. For each pair of stimuli, each matrix (human, monkey)
color codes the dissimilarity of the two response patterns elicited by the stimuli in IT. The two matrices are the
product of completely separate experiments and analysis pipelines (data not selected to match). Human data is from
316 bilateral inferotemporal voxels (1.95x1.95%2 mm?) with the greatest visual response in an independent data set.
Dissimilarity matrices averaged across 2 sessions for each of 4 subjects. Monkey data is from >600 IT single cells
isolated in two monkeys. (B) Human early visual cortex response pattern dissimilarity matrix showing a lack of a
discernible pattern with the same stimuli distribution.

category clustering as shown in Figure 14B. We suspect that a computational model accounting for
our results would need to have complex statistical category knowledge as might be acquired by
supervised learning. Our results suggest that the extraction of information on membership in these
behaviorally crucial categories constitutes a fundamental function of primate IT across species.
Within the category clusters, the primate IT code appears to represent more fine-grained object
information. This information as well is consistent across species and may reflect a form of visual
similarity. The close match provides some hope that data from single-cell recording and fMRI, for all
their differences, may consistently reveal neuronal representations when subjected to massively
multivariate analyses of response-pattern information. (J. Bodurka, H. Esteky, R. Kiani, N.
Kriegeskorte, M. Mur, D. Ruff, K. Tanaka)

2B-3. Flip angle selection for fMRI revisited

Functional MRI time series are typically dominated by nuisance or physiologic fluctuations. Flip angle
choice (Ernst angle) assumes only thermal noise. In this project[2], we show that when time series are
dominated by physiologic fluctuations, the flip angle choice has little impact on functional contrast to
noise ratio, therefore allowing latitude in choosing a more desirable low flip angle.

In this study, we show in Figure 15, that when SNR is high and physiological noise dominates over
system/thermal noise, although TSNR still reaches it maximum for the Ernst angle, reduction of
imaging flip angle well below this angle results in negligible loss in TSNR. We provide a way to
compute a suggested imaging flip angle, which constitutes a conservative estimate of the minimum
flip angle that can be used under given experimental SNR and physiological noise levels. For our
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experimental conditions, this suggested angle is 7.63° for the grey
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flip angle is shown as a yellow Figure 16: Motor and visual cortex activation across flip angle for a

marker. representative subject.

wise effect size or statistical maps of activation as compared to imaging at 75° (an angle close to the
Ernst angle). This is shown in Figure 16. These results suggest that using low flip angles in BOLD fMRI
experimentation to obtain the following benefits: reduction of RF power, reduction of apparent T1-
related inflow effects, reduction of through-plane motion artifacts, lower levels of physiological noise,
and improved tissue contrast is feasible when physiological noise dominates and SNR is high. (P. A.
Bandettini, N. Brenowitz, J. Gonzalez-Castillo, D. Handwerker, S. ]. Inati, Z. S. Saad)

2C. Current and Future Experiments
2C-1. Decoding of 100 ms timing differences between ocular dominance columns

We investigated the decoding of millisecond-order timing
information in columnar-level neural activation from the
blood oxygen level dependent (BOLD) signal in human
functional magnetic resonance imaging (fMRI). In the ‘ 2posiive of negaiive
experiment, ocular dominance columns were activated by [ - ! '
monocular visual stimulation with 500- or 100- ms onset
differences. We observed that the event-related tposive peak
hemodynamic response (HDR) in the human visual cortex o
was sensitive to the subtle onset differences, but these
activation onset differences were not reflected in
hemodynamic latencies. 4 FWHM

3.TTP

Figure 17: Responses of event-related

We examined decoding success based on various 1o
HDR for two conditions. The explored

characteristics of HDR including response amplitude, time to s ) o

, ) ) ] characteristics are: 1. Positive peak
peak, full width at half-maximum response. This approach is amplitude 2. Pos or neg peak
shown schematically in Figure 17. We found that the timing | amplitude. 3. Time-to-peak (TTP). 4.
difference was most accurately differentiated by comparison | Full-width of half maximum (FWHM).
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Figure 18: Decoding accuracies and their standard
errors across six subjects for the extracted features
of hemodynamic response shape. Asterisk (*) and
double asterisk (**) indicate that the accuracy is
higher than the chance level (50 %) by p < 0.05 and p
< 0.01 respectively with one-sample t test.

of the signal change amplitude (positive or
negative). When using either positive or
negative peak amplitude of the deconvolved
HDR, high decoding performance could be
achieved for both the 500ms and the 100ms
onset differences. The high accuracy even for
the 100ms difference, given that the signal was
sampled at a TR of 250 ms and 2x2x3-mm
voxels, indicates that multivariate classification
analysis could decode higher resolution
information than actual sampling rate. Also,
both down-sampling and smoothing did not
affect the decoding accuracies, suggesting that
high-frequency neuronal activation information
is represented as a complex spatiotemporal
response pattern of low frequency BOLD signal
[24]. We plan to more fully explore the temporal

and spatial “signatures” of extremely brief and
small activations to determine how temporal delay is transferred to amplitude with regard to the
BOLD response. (P. A. Bandettini, W.-M. Luh, M. Misaki)

2C-2. Decoding “yes” and “no.”

Towards the goal of determining the limits of sensitivity of the fMRI decoding approach, our goal was
to determine of we could differentiate a simple “yes” or “no” response or subjective correctness,
based on subjects’ fMRI activation patterns as they responded to simple common-knowledge
questions. In each trial, we present a cue to instruct the subject to either honestly or dishonestly
answer the following questions. After reading the questions, subjects have to keep their final answers
in mind until a button-press prompt appears several seconds after the question are removed from the
screen. At this point subjects press one of two buttons to indicate their final answers, as shown in
Figure 19. 125 trials with questions about simple facts were presented in two sessions at 7T.

Based on previous research, we decided to focus on activation patterns within dorsolateral frontal
cortex, in particular BA9 portion of the left middle frontal gyrus. For each trial, we extracted five time
points of the voxels within this region,
starting at the onset of the questions.
Treating each voxel as a feature and
= each time point as a sample, we trained

No Gaussian Naive Bayesian (GNB)
+ e classifiers to predict the truthful Yes/
2s as 8s 2 No answers to the questions. A leave-
two-trial-out cross-validation scheme
was used to test the performance of the
classifier. Specifically, in each cross-
validation iteration, we left out all the
samples from two trials and used the

Yes

Is one minute 60 seconds ?

Figure 19: The experimental paradigm. At the beginning of
each trial, a cue instructing the subject to answer the following
question either honestly (A) or dishonestly (B). The subject
was asked to generate the final answer according to his/her
truthful answer and the instructed intention.
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remaining samples to train the GNB classifier. The
performance of the classifier was evaluated using the left-
out samples. To obtain predictions for each trial (each
question), we pooled the predictions for the five samples
from each trial and made decisions according to their vote.
The final prediction accuracy was determined by averaging
the trial-wise prediction accuracies across all cross-
validation iterations.

To further examine whether increasing of signal-to-noise o
. . . 2 4 6 8 10 12 14 16 18 20
ratio can enhance the prediction accuracy, we randomly Nt o e s

selected trials and averaged the five samples from each trial
in a point-to-point manner. GNB classifiers were trained
and tested as described above. This procedure was
repeated 50 times, and prediction accuracies were
averaged to get the final accuracy of the classifier.

Figure 20: Prediction accuracy increases
with the number of trials averaged. The
red curve indicates our ROI in the
overlap between Broadmann Area 9 and
left middle frontal gyrus. The blue curve

We found above-chance accuracy in trial-by-trial [Trepresents a control region in the right
prediction, but also found that the prediction accuracy | Insula and the green curve represents a
increased with the number of trials averaged. Figure 20 | control region in the primary visual
shows an accuracy curve for one subject. The mean | €ortex. The color belts show the 95%
prediction accuracy achieved 90% when we averaged all 20 | confidence level. The grey belt indicates
trials. These findings indicate that the truthful answers are | the 95% confidence interval of the null-
encoded in brain activity independently from intentions, distributions of the accuracies.

and multivariate pattern analysis is able to decode them

from fMRI signal. Furthermore, these results suggest that once we have sufficient signal-to-noise ratio
from fMRI scans, we are able to accurately decode the truthful answers of the subjects in a single trial.
(P. A. Bandettini, Javier Gonzalez-Castillo, Z. Huang, Z. Yang)

Theme 3: Structural MRI changes, perfusion, and fMRI Calibration
3A. Introduction: Expanding the utility of fMRI and MRI

Our lab always been interested in advancing neuroimaging approaches beyond the scope of resting
state or activation-based fMRI. This theme focusses on work related to this effort. Specifically, we
have developed a processing pipeline for assessing anatomic changes associated with exercise and
learning[4]. We also demonstrate changes in the hippocampus with an aerobic exercise intervention.
With regard to perfusion imaging, we have developed in collaboration with our fMRI core facility, a
high resolution, off-resonance corrected arterial spin labeling (ASL) approach at 7T, resulting in
perhaps the highest quality ASL-based perfusion images yet produced[5]. In our ongoing research, we
are exploring a method by which a rapid “calibration scan” can be obtained in a manner that is both
easier and more accurate than either breath holding or hypercapnia for obtaining global, whole brain,
signal change characteristics We have found that the simple performance of a Valsalva maneuver can
rapidly elicit signal changes that have different temporal characteristics yet similar spatial
characteristics as those induced by CO; breathing or breath-holding. We are currently exploring the
potential of this finding for implementation as a simple and repeatable global calibration stress that
may be used either for assessing vascular patency or for BOLD calibration.
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3B. Progress report
3B-1. Structural brain changes with learning and exercise

Voxel-Based Morphometry (VBM) has become a mainstay in the analysis of structural data in the
neuroimaging community. It was originally used only to study differences in brain structure between
different populations, but it has now become common to use this technique for determining structural
changes within-subject after relatively short periods of learning. In 2009, our group was among the
first to raise concerns with the way the VBM method was being used[4]. We use fMRI and three
different standard implementations of longitudinal VBM: SPM2, FSL, and SPM5 to assess functional
and structural changes associated with a simple learning task. Behavioral and fMRI data clearly
showed a significant learning effect. However, initially positive VBM results were found to be
inconsistent across minor perturbations of the analysis technique and ultimately proved to be
artifactual. When alignment biases were controlled for and recommended statistical procedures were
used, no significant changes in grey matter density were found. This paper demonstrated some of the
potential pitfalls of existing longitudinal VBM methods and prescribes that these tools be applied and
interpreted with extreme caution.

Since our 2009 paper, several other groups have
echoed our concerns with longitudinal VBM. H
Thompson et al. [25]have uncovered severe biases in

the Alzheimer’s Disease Neuroimaging Initiative 10¢ o
(ADNI). More recently Thomas and Baker [26]have S
published a comprehensive critique of the longitudinal : l
VBM literature. Clearly performing accurate |

longitudinal analyses remains a challenge for the field.
As a methodological laboratory, part of our role is to
provide constructive critiques when problematic
methods are employed.

-6w ow 6w 12w

Figure 21: Six weeks of aerobic exercise
training (30 minutes per day, 5 times per
day) significantly increased Time To
Exhaustion (TTE). After a six-week of period
of sedentary behavior, time to exhaustion
returned to baseline levels. Increased

There is one manipulation that the neuroimaging
community agrees produces profound and lasting
changes in the structure of the brain: aerobic exercise
[3]. It has long been known that exercise is an effective

catalyst of plasticity in animals. In collaboration with
Heidi Johansen-Berg at the Oxford University, we have
recently demonstrated that the hippocampus and the
basal ganglia exhibit significant growth after just six
weeks of aerobic exercise in a group of sedentary
adults. In this study 37 sedentary participants (mean
age = 31.5, 18 Males, mean VOzMax score = 33.1 ml/kg/
min) engaged in just six weeks of aerobic exercise, five
days a week, 30 minutes a day (mean adherence = 28.9
sessions). Fitness assessments and MRI scans were
conducted six weeks before (-6w), immediately before
(Ow), immediately after (+6w), and/or six weeks after

20

aerobic fitness also resulted in an increased
putamen volume, a region involved in motor
control and learning. Putamen volume
returned to baseline levels after six weeks of
rest. By contrast the subiculum, a region
within the hippocampus involve in memory
and stress regulation, increased in volume
after six weeks of aerobic exercise and the
volume increase was maintained after six
weeks of rest. Therefore it appears that the
putamen and the subiculum have different
exercise-mediated plasticities that exhibit
different time courses.




the exercise period (+12w). Volumes of subcortical structures were measured in each scan session
using Freesurfer and FSL tools (FIRST). Across the six-week exercise period, participants showed a
mean increase in Time To Exhaustion (TTE) of 12.8% (p<0.0001). Figure 21 shows that there was
also a significant increase in the volume of both the subiculum (a subfield of the hippocampus, 1.3%,
p<0.05) and the putamen (part of the dorsal striatum 0.89%, p<0.05). Across the six-week post-
exercise rest period, TTE decreased to 3% above baseline levels. Subiculum volume also returned to
near baseline (with significant variance across subjects), however the volume of the putamen
remained elevated. We found a significant correlation between the amount of volume change in the
subiculum and the age of the participant. No such correlation was observed for the putamen,
potentially suggesting a different mechanism for the structural change. Across the six-week, pre-
exercise control period, no significant volume changes were observed though the subiculum showed
greater variance with several subjects showing a decreased volume. This work represents the first
demonstration of significant plasticity in subcortical structures after only six weeks of exercise
training in sedentary adults. Additional imaging modalities will be used to explore the neural
substrate of these volume changes. (P. A. Bandettini, H. Johansen-Berg, S. Marrett, A. Martin, D. A. Ruff,
Z. S.Saad, A. G. Thomas)

3B-2. Robust pseudo-continuous arterial spin labeling at 7T

Pseudo-continuous arterial spin labeling (PCASL) can provide best SNR efficiency with a sufficiently
long tag at high fields such as 7T, but it is very sensitive to off-resonance fields at the tagging location.
We developed a robust prescan procedure to estimate the PCASL RF phase and gradient parameters
required to compensate the off-resonance effects at each vessel location in about 1-2 minutes.

An incremental phase is added to each RF pulse in the labeling pulse train for both ‘tag’ and ‘control’
in a pair-wise fashion similar to traditional PCASL. This allows the pair-wise subtracted signal to
follow a periodic oscillation function with zero symmetry in signal amplitude to allow for robust
estimation of frequency offsets. Two thick 10mm axial slices across lateral ventricles are acquired
with large voxels and 400ms post-labeling delay (PLD) to optimize
SNR efficiency since intravascular tagged blood is actually beneficial
to SNR. A total of 8 or 16 phases after 4 dummy volumes were
acquired with 3sec TR for a scan time of 1 min and 1min 48sec,
respectively. Three ROIs composed of perfusion territory for left/
right carotids and vertebral arteries were selected based on pair-
wise subtracted signal among sampled phases. The average signal in
each ROI was fitted to a cosine function to determine the phase
offset at each tagging vessel. To compensate for off-resonance fields
at the tagging location, the measured offsets were applied in the
subsequent PCASL scan with additional x/y gradients and fixed
phase offset. After correction, all three territories have the same
frequency offset. The CBF maps of 20 slices with 1.5x1.5x3mm?3
voxels obtained in 7min after compensation are shown in Figure 24.
With the proposed robust estimation and correction of frequency
offsets at the tagging vessels, high quality whole-brain PCASL
perfusion data of the human brain can be successfully obtained at
7T. (P. A. Bandettini, T.-Q. Li, W.-M. Luh, S. L. Talagala)

Figure 24: PCASL images obtained
in 7min at 7T with 1.5x1.5x3mm?
resolution after compensation for
off-resonance effects with x/y|
gradient and tagging phase offset.
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3C. Current and future experiments

3C-1. Breath-holding and pressure modulation effects on cerebrovascular responses.

4 ! [~ Breath hold - exhale
Breath hold - inhale

[ Valsalva - 10mmHg, 20s
Valsalva - 20mmHg, 20s
Valsalva - 30mmHg, 20s
Valsalva - 40mmHg, 20s

BOLD % Change

-10 0 10 20 30 40
sec

Figure 25: Curves showing gray matter response
to breath hold and Valsalva demonstrating
positive and negative inflections that are

modulated by Valsalva pressure.

Whole-brain cerebrovascular responses are used in
clinical and basic research settings. In clinical
settings, information about vascular patency and
susceptibility to stroke may be obtained.
Cerebrovascular reactivity has also been shown to
be altered in multiple sclerosis. In fMRI, a global
signal change induced by breath-holding or
hypercapnia induced by breathing CO2 can be used
to “calibrate” the signal - eliminating spatially
variant baseline venous blood volume effects on the
BOLD signal change. Calibration along with
perfusion measures has also been used to obtain
quantitative measures of activation-induced CMRO>
changes.

Existing methods to cause a global cerebrovascular
response are not ideal. CO; breathing requires a gas
supply, extra hardware near the MRI scanners, and

masks over subjects’ faces. Other methods use drugs, like Acetazolamide, which limit what can be
done during a single scanning session since their time constants are slow. Breath-holding is
convenient and can be performed by most people, but it isn’t as consistent as COz breathing and it’s
difficult to modulate cerebrovascular response magnitude, which can be used to get more accurate

vascular response measures than with other methods.

We are examining a new, non-invasive way to parametrically
modulate cerebrovascular response that is based on the
Valsalva maneuver - an increase in chest pressure during a
breath hold.

During a breath-hold we tell volunteers to blow into a non-
compliant tube connected to a pressure gauge. This lets us give
volunteers real-time feedback of the air pressure in their lungs.
We have volunteers perform breath-holds at multiple pressure
levels and with no pressure feedback. Figure 25 shows that the
fMRI T2*-weighted response across cortex is modulated by
chest pressure. Figure 26 shows maps that were normalized to
the absolute value of the response (to compare the negative
changes associated with the rapid Valsalva effect). In addition to
collecting these data with T2*-weighted MRI sequence, we are
collecting data using multi-echo fMRI and arterial spin label to
better understand how these pressure changes alter MRI
signals. (P. A. Bandettini, D. A. Handwerker, R. M. Harper, P. Wu)
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Figure 26: Comparison of fMRI
signal response across breath
holding and Valsalva conditions.
Maps of peak positive magnitude
and absolute valley magnitude
appear similar across breath hold
and Valsalva conditions.
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Section 3: Resources Requested
Currently, SFIM personnel consists of the following personnel:

Chief, Peter Bandettini

Research Fellow, Javier Gonzalez-Castillo
Research Fellow, Daniel Handwerker

Research Fellow, Hang Joon Jo (starting in Jan)
Research Fellow, (currently open and being filled)
Predoc IRTA (GPP), Prantik Kundu

Predoc IRTA (GPP), Raphael Kaplan

Postbac IRTA, Paula Wu

Postbac IRTA, Colin Hoy

IT Desktop Specialist, Joseph Naegele

IT Specialist, (currently open and being filled)
Staff Scientist (open, yet do not have funding to fill this)
Special Volunteer (post-doc), Jennifer Evans
Special Volunteer (post-doc), Zhi Yang

I would like to request the following:

1. Two more Postbac IRTA positions and funding to pay for them.
2. Funding to fill my open title 42 staff scientist position.

Justification for request #1. A formula that has worked well for my group in the past is to have one
post bac IRTA for each post doc or research fellow. This works extremely well in that each research
fellow then supervises a post bac IRTA, thus gaining supervisory experience and providing one-on-
one time with the post bac IRTA who then, after one year, works on a small project of their own. |
have four post docs and only two post bac IRTAs. I'm therefore requesting two more post bac IRTAs.

Justification for request #2. In 2009, my Staff Scientist, Rasmus Birn left to obtain an assistant
professor position at University of Wisconsin, Madison. | was in the process of filling his position
when he informed me that he was considering coming back. I left the position open as I expected him
to return. After about a year of planning to return, he decided, in the end, to stay in Madison. In the
mean time, because I took too long to fill the position, I was no longer credited with having the
position when we had our budget cuts. I was left with an open staff scientist position but no funds to
pay for it. Other tenured Pls who have been at the NIH for over 13 years with all Outstanding ratings
for their past BSC reviews [ imagine have at least one and more likely two staff scientists. I currently
have none. Although we are maintaining a high level of productivity without one, I am concerned that
the scientific continuity of the section will be lost once my senior post docs move on.

As a final note, after my last BSC review in 2007, which I had received “Outstanding,” [ was told by the

scientific director that none of my requests would be fulfilled. If my scores merit it this time, I hope
that the NIMH budget is such that these relatively small requests could be fulfilled.

29



