

INTRODUCTION

Multi-echo denoising removes non-T2* and therefore non-BOLD time series fluctuations. This includes scanner artifacts and head motion. However, breathing related BOLD changes are not removed.

We use the multi-echo ICA denoising⁷ method implemented in tedana⁴ and additionally removed ICA components that are correlated with head motion, cardiac, and respiratory fluctuations. Our hypothesis was that this additional ICA removal process would help

Multi-echo fMRI denoising with physiological and motion information Micah N. Holness¹, Daniel A. Handwerker¹, Joshua B. Teves¹, A. Tyler Morgan¹, Javier Gonzalez-Castillo¹, Peter Bandettini^{1,2} 1. Section on Functional Imaging Methods, Laboratory of Brain and Cognition 2. Functional MRI Core Facility National Institute of Mental Health, MD, USA

2nd echo: motion+CSF

T-stat

RESULTS Group maps are similar across processing methods

Optimally Combined: Tedana: motion+CSF

Combined Regressors

Full color opacity at p<0.001 with increasing

eliminate artifactual BOLD and maintain higher statistical degrees of freedom.

METHODS

Experimental Paradigm

13 participants completed several tasks: 25 min: visual vs audio & word vs nonword task⁸ This task should create measurable contrasts between conditions in every brain lobe and in areas with both large and small magnitude responses that can be used to compare methods 8 min: cued breathing task (2X) with the same breathing pattern each run. Breathing rate and depth slowly changes across the run 8 min: movie + cued breathing (2-3X) with different breathing patterns each run These runs can be used for inter-run and inter-subject correlation (ISC) measurements. Better removal of cardiac and respiratory artifacts should improve ISC between the movie runs and reduce artifactual ISC between the cued breathing runs with common breathing patterns.

Note: Analyses of the movie and breathing runs are in process and not being presented on this poster

Acquisition 3T Siemens Prisma, multi-echo fMRI (CMRR Multiband EPI, SMS=2 iPAT=2, TE=13.44, 31.7, & 49.96), 3.0 mm isotropic voxels. Stored magnitude & phase information and collected 5 RF-off "noise" volumes at the end of each sequence. Respiratory belt and pulse oximetry recorded.

Data processing

Data were preprocessed with AFNI³. Skull stripping and anatomical ROIs were calculated with Freesurfer⁵ and functionally localized using the optimally combined data with the Visual-Audio contrast for V1 & A1 and the wordnonword contrast for all other ROIs. Multi-echo ICA denoising used tedana⁴. Cardiac and respiratory frequency variations⁶, respiratory volume changes¹, and heart rate changes² were calculated using niphlem¹⁰. Presented GLMs were calculated using 4 conditions: (1) 2nd echo data with motion and 1st derivative of motion traces (Motion), and lateral ventricle ROIs (CSF) as nuisance regressors. (2) The optimal combination of echoes with motion & CSF regressors (3) Optimal combination with tedana rejected ICA components, motion, and CSF as nuisance regressors. (4) Motion, CSF, respiration, & cardiac signals fit to ICA & used as combined nuisance regressors (see Denoising Methods)

Kappa is a measure of T2* fluctuations and rho is a measure of S0 fluctuations in each component. These plots contain all components from all runs. The components that are rejected due to motion or physiology but were not rejected by tedana tend to have low rho and high kappa.

CONCLUSIONS

The combined regressors method, while conserving degrees of freedom, produced results that were slightly inferior in noise elimination to tedana for the word-nonword contrast & neural with the visual-audio contrast.

Possible reasons combined regressors are worse:

- Task-correlated breathing and motion are artifacts & should be removed
- Combined regressors remove components that are a mix of desired signal and noise
- Most ICA components (often over 80%) correlate with the noise

Many (often over 80%) of components fit the noise model, particularly with motion (mean=64%). A mean 25% fit Phys_Freq Model (RETROICOR) and the Phys_Variability model (RVT & HRT). This indicates that ICA doesn't cleanly separate signal from noise. Dashed lines are means

FUTURE STEPS

- Explore alternatives to ICA that take advantage of multi-echo information to cleanly separate signal
- Examine individual participants with low and high levels of motion to better characterize factors that affect tedana and the combined regressors results Process breathing & movie runs to see how combined regressors directly address respiratory artifacts
- Integrate NORDIC¹¹ into this processing stream

Processing code

https://github.com/nimh-sfim/ComplexMultiEchol

NORDIC

This poster's abstract focused on NORDIC denoising¹¹ combined with the methods presented here. While still planned, ensuring valid statistics across a combined pipeline required more work.

ACKNOWLEDGEMENTS

Members of the AFNI team, including Rick Reynolds, Daniel Glen, Paul Taylor, & Gang Chen provided significant guidance. This work utilized the computational resource of the NIH HPC Biowulf cluster: hpc.nih.gov

REFERENCES

1. Birn, R. M. Neuroimage. 2006, 2. Chang, C, NeuroImage 2009 3. Cox, R. W. Computers and Biomedical Research. 1996 4. DuPre E., Salo, T. Journal of Open Source Software. 2021 5. Fischl, B. Cereb Cortex 200b, 6. Glover, G. Magnetic Resonance Medicine. 2000, 7. Kundu, P. Neuroimage. 2012, 8. Malins, J, Neuropsychologia, 2016, 9. Pruim, R. NeuroImage. 2015, 10. Verstynen, T, Deshpande V., NeuroImage 2011, 11. Vizioli L. Nat Commun 2021

Contact: micah.holness@nih.gov https://www.linkedin.com/in/micah-holness regressors. ICA does not cleanly separately signal and noise into distinct

components

DENOISING METHODS

Component time series in black. Model fit in red.

Despite high kappa values, there were rejected due

to significant model fits nuisance regressors

Modeled task

combined reject

Get one combined set of

nuisance regressors using

both models.

responses & nuisance regressors (Per run in this study: 4) detrending, 12 motion, 3 ventricles). Tedana denoising adds the time series from rejected components as nuisance regressors

Benefits & Risks for combined method

+ Combined regressors give a lot of flexibility for ways to combine empirical noise models - Works best if each ICA component is a clean model signal or noise

Identify ICA components to rejected as not T2* and linearly regress the time series of those components from the data

